A pommaret division algorithm for computing grobner bases in boolean rings

被引:0
|
作者
Gerdt, Vladimir P. [1 ]
Zinin, Mikhail V. [1 ]
机构
[1] Laboratory of Information Technologies, Joint Institute for Nuclear Research, 141980 Dubna, Russia
关键词
D O I
10.1145/1390768.1390784
中图分类号
学科分类号
摘要
In this paper an involutive algorithm for construction of Grobner bases in Boolean rings is presented. The algorithm exploits the Pommaret monomial division as an involutive division. In distinction to other approaches and due to special properties of Pommaret division the algorithm allows to perform the Grobner basis computation directly in a Boolean ring which can be defined as the quotient ring F2[x1,..., xn] / 12 + x1,..., xn2 + xn. Some related cardinality bounds for Pommaret and Grobner bases are derived. Efficiency of our first implementation of the algorithm is illustrated by a number of serial benchmarks.
引用
收藏
相关论文
共 50 条
  • [21] NONCOMMUTATIVE GROBNER BASES OVER RINGS
    Bouesso, Andre Saint Eudes Mialebama
    Sow, Djiby
    COMMUNICATIONS IN ALGEBRA, 2015, 43 (02) : 541 - 557
  • [22] A new efficient algorithm for computing Grobner bases (F4)
    Faugére, JC
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1999, 139 (1-3) : 61 - 88
  • [23] An Involutive GVW Algorithm and the Computation of Pommaret Bases
    Hashemi, Amir
    Izgin, Thomas
    Robertz, Daniel
    Seiler, Werner M.
    MATHEMATICS IN COMPUTER SCIENCE, 2021, 15 (03) : 419 - 452
  • [24] A NEW FRAMEWORK FOR COMPUTING GROBNER BASES
    Gao, Shuhong
    Volny, Frank
    Wang, Mingsheng
    MATHEMATICS OF COMPUTATION, 2015, 85 (297) : 449 - 465
  • [25] COMPUTING GROBNER BASES ASSOCIATED WITH LATTICES
    Alvarez-Barrientos, Ismara
    Borges-Quintana, Mijail
    Angel Borges-Trenard, Miguel
    Panario, Daniel
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2016, 10 (04) : 851 - 860
  • [26] FGb: A Library for Computing Grobner Bases
    Faugere, Jean-Charles
    MATHEMATICAL SOFTWARE - ICMS 2010, 2010, 6327 : 84 - 87
  • [27] Polynomial selection for computing Grobner bases
    Ito, Takuma
    Nitta, Atsushi
    Hoshi, Yuta
    Shinohara, Naoyuki
    Uchiyama, Shigenori
    JSIAM LETTERS, 2021, 13 : 72 - 75
  • [28] Modular algorithms for computing Grobner bases
    Arnold, EA
    JOURNAL OF SYMBOLIC COMPUTATION, 2003, 35 (04) : 403 - 419
  • [29] Involutive algorithms for computing Grobner bases
    Gerdt, VP
    Computational Commutative and Non-Commutative Algebraic Geometry, 2005, 196 : 199 - 225
  • [30] Computing Comprehensive Grobner Systems and Comprehensive Grobner Bases Simultaneously
    Kapur, Deepak
    Sun, Yao
    Wang, Dingkang
    ISSAC 2011: PROCEEDINGS OF THE 36TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION, 2011, : 193 - 200