Molecular dynamics modelling of water nanodroplet impingement on silicon dioxide and silicon nitride substrates

被引:4
作者
Desai, Salil [1 ]
Kaware, Ravindra D. [2 ]
机构
[1] Department of Industrial and Systems Engineering, North Carolina A and T State University, 423 McNair Hall, 1601 E. Market Street, Greensboro, 27411, NC
[2] 2301 R Street, Auburn, 68305, NE
基金
美国国家科学基金会;
关键词
Direct-write technology; Molecular dynamics; Nanodroplet impingement; Nanomanufacturing; Substrate wetting;
D O I
10.1504/IJNM.2014.066281
中图分类号
学科分类号
摘要
This paper reports the study of a droplet-based scalable micro/nanomanufacturing process using molecular dynamics (MD) modelling. The objective of the study is to understand the nanodroplet impingement and spreading mechanism on silicon dioxide (SiO2) and silicon nitride (Si3N4) substrates with different impingement velocities. The dependence of dynamic contact angle on the initial droplet velocity was investigated for hydrophilic and hydrophobic substrate interactions. Higher rebound effect and thereby slower wetting rates were observed for the SiO2-water system as compared to the Si3N4-water system for the same magnitudes of impingement velocities. The MD simulation results were validated using the molecular kinetic theory. Findings of this research are expected to establish the required process controls in droplet-based scalable nanomanufacturing for precision deposition of nanoscale features. Copyright © 2014 Inderscience Enterprises Ltd.
引用
收藏
页码:432 / 452
页数:20
相关论文
共 32 条
[1]  
Alizadeh A., Bahadur V., Zhong S., Shang W., Ruud R.L.J., Yamada M., Ge L., Dhinojwala A., Sohal M., Temperature dependent droplet impact dynamics on flat and textured surfaces, Appl. Phys. Lett., 100, 11, pp. 111-601, (2012)
[2]  
Aronov D., Rosenman G., Barkay Z., Wettability study of modified silicon dioxide surface using environmental scanning electron microscopy, J. Appl. Phys., 101, 8, pp. 084-901, (2007)
[3]  
Beck F., Polman A., Catchpole K., Tunable light trapping for solar cells using localized surface plasmons, J. Appl. Phys., 105, 11, pp. 114310-114317, (2009)
[4]  
Blake T., Clarke A., De Coninck J., De Ruijter M., Contact angle relaxation during droplet spreading: Comparison between molecular kinetic theory and molecular dynamics, Langmuir, 13, 7, pp. 2164-2166, (1997)
[5]  
Briones A.M., Ervin J.S., Putnam S.A., Byrd L.W., Gschwender L., Micrometer-sized water droplet impingement dynamics and evaporation on a flat dry surface, Langmuir, 26, 16, pp. 13272-13286, (2010)
[6]  
Chen P., Chen L., Han D., Zhai J., Zheng Y., Jiang L., Wetting behavior at micro-/nanoscales: Direct imaging of a microscopic water/air/solid three-phase interface, Small, 5, 8, pp. 908-912, (2009)
[7]  
Desai S., Esho T., Kaware R., Experimental investigation of controlled microdroplet evaporation towards scalable micro/nano manufacturing, IIE Transactions, 44, 2, pp. 155-162, (2012)
[8]  
Essmann U., Perera L., Berkowitz M.L., Darden T., Lee H.G., Pedersen L.G., A smooth particle mesh Ewald method, J. Chem. Phys., 103, 19, (1995)
[9]  
Foloppe N., MacKerell A.D., All-atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data, Journal of Computational Chemistry, 21, 2, pp. 86-104, (2000)
[10]  
Francois M., Shyy W., Computations of drop dynamics with the immersed boundary method, part 2: Drop impact and heat transfer, Numerical Heat Transfer: Part B: Fund., 44, 2, pp. 119-143, (2003)