Orbital Stability of Smooth Solitary Waves for the Novikov Equation

被引:0
作者
Ehrman, Brett [1 ]
Johnson, Mathew A. [1 ]
Lafortune, Stephane [2 ]
机构
[1] Univ Kansas, Dept Math, 1460 Jayhawk Blvd, Lawrence, KS 66045 USA
[2] Coll Charleston, Dept Math, Charleston, SC 29401 USA
基金
美国国家科学基金会;
关键词
BLOW-UP; ASYMPTOTIC STABILITY; WELL-POSEDNESS; INSTABILITY; PEAKONS; EXISTENCE;
D O I
10.1007/s00332-024-10098-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the orbital stability of smooth solitary wave solutions of the Novikov equation, which is a Camassa-Holm-type equation with cubic nonlinearities. These solitary waves are shown to exist as a one-parameter family (up to spatial translations) parameterized by their asymptotic end state, and are encoded as critical points of a particular action functional. As an important step in our analysis, we must study the spectrum the Hessian of this action functional, which turns out to be a nonlocal integro-differential operator acting on L2(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>2({\mathbb {R}})$$\end{document}. We provide a combination of analytical and numerical evidence that the necessary spectral hypotheses always hold for the Novikov equation. Together with a detailed study of the associated Vakhitov-Kolokolov condition, our analysis indicates that all smooth solitary wave solutions of the Novikov equation are nonlinearly orbitally stable.
引用
收藏
页数:38
相关论文
共 52 条
[1]   Instability of the Hocking-Stewartson pulse and its implications for three-dimensional Poiseuille flow [J].
Afendikov, AL ;
Bridges, TJ .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2001, 457 (2006) :257-272
[2]   A TOPOLOGICAL INVARIANT ARISING IN THE STABILITY ANALYSIS OF TRAVELING WAVES [J].
ALEXANDER, J ;
GARDNER, R ;
JONES, C .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1990, 410 :167-212
[3]   Numerical exterior algebra and the compound matrix method [J].
Allen, L ;
Bridges, TJ .
NUMERISCHE MATHEMATIK, 2002, 92 (02) :197-232
[4]  
Barker B, 2015, STABLAB: a MATLAB-based numerical library for Evans function computation
[5]   Stability and instability of solitary waves of the fifth-order KdV equation: a numerical framework [J].
Bridges, TJ ;
Derks, G ;
Gottwald, G .
PHYSICA D-NONLINEAR PHENOMENA, 2002, 172 (1-4) :190-216
[6]   The Orr-Sommerfeld equation on a manifold [J].
Bridges, TJ .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1999, 455 (1988) :3019-3040
[7]  
Brin LQ, 2001, MATH COMPUT, V70, P1071, DOI 10.1090/S0025-5718-00-01237-0
[8]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[9]  
Camassa R., 1994, Adv. Appl. Mech, V31, P1, DOI DOI 10.1016/S0065-2156(08)70254-0
[10]   The Shallow-Water Models with Cubic Nonlinearity [J].
Chen, Robin Ming ;
Hu, Tianqiao ;
Liu, Yue .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2022, 24 (02)