Mathematical modelling for coal fired supercritical power plants and model parameter identification using genetic algorithms

被引:4
作者
Mohamed O. [1 ]
Wang J. [1 ]
Guo S. [1 ]
Wei J. [1 ]
Al-Duri B. [2 ]
Lv J. [3 ]
Gao Q. [3 ]
机构
[1] School of Electrical, Electronics, and Computer Engineering, University of Birmingham, Edgbaston
[2] School of Chemical Engineering, University of Birmingham, Edgbaston
[3] Department of Thermal Engineering, Tsinghua University, Beijing
来源
Lecture Notes in Electrical Engineering | 2011年 / 90 LNEE卷
基金
英国工程与自然科学研究理事会;
关键词
Coal-fired power generation; Genetic algorithms; Mathematical modeling; Supercritical boiler;
D O I
10.1007/978-94-007-1192-1_1
中图分类号
学科分类号
摘要
The paper presents the progress of our study of the whole process mathematical model for a supercritical coal-fired power plant. The modelling procedure is rooted from thermodynamic and engineering principles with reference to the previously published literatures. Model unknown parameters are identified using Genetic Algorithms (GAs) with 600MW supercritical power plant on-site measurement data. The identified parameters are verified with different sets of measured plant data. Although some assumptions are made in the modelling process to simplify the model structure at a certain level, the supercritical coal-fired power plant model reported in the paper can represent the main features of the real plant once-through unit operation and the simulation results show that the main variation trends of the process have good agreement with the measured dynamic responses from the power plants. © 2011 Springer Science+Business Media B.V.
引用
收藏
页码:1 / 13
页数:12
相关论文
共 45 条
  • [31] Using Genetic Algorithms for Parameter Estimation of a Two-Component Circular Mixture Model
    Kilic, Muhammet Burak
    4TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL MATHEMATICS AND ENGINEERING SCIENCES (CMES-2019), 2020, 1111 : 99 - 110
  • [32] Parameter Optimization of a Fuzzy Logic Controller for a Power Electronics Boost Converter using Genetic Algorithms
    Rui, Oyvind
    Hajizadeh, Amin
    Undeland, Tore M.
    PROCEEDINGS OF THE 9TH WSEAS INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, KNOWLEDGE ENGINEERING AND DATA BASES, 2010, : 120 - +
  • [33] Optimization-based parameter identification of a coffee fermentation model using evolutionary algorithms
    Rosero, Nadia
    Pantoja, Andres
    IFAC PAPERSONLINE, 2021, 54 (20): : 681 - 686
  • [34] Parameters Identification of the Flexible Fin Kinematics Model Using Vision and Genetic Algorithms
    Jurczyk, Karolina
    Piskur, Pawel
    Szymak, Piotr
    1600, Sciendo (27): : 39 - 47
  • [35] Improved methods for parameter estimation of mixture Gaussian model using genetic and maximum likelihood algorithms
    Nasab, NM
    Analoui, M
    Delp, EJ
    MEDICAL IMAGING 2004: IMAGE PROCESSING, PTS 1-3, 2004, 5370 : 566 - 576
  • [36] EXERGOECONOMIC OPTIMIZATION OF GAS TURBINE POWER PLANTS OPERATING PARAMETERS USING GENETIC ALGORITHMS: A CASE STUDY
    Gorji-Bandpy, Mofid
    Goodarzian, Hamed
    THERMAL SCIENCE, 2011, 15 (01): : 43 - 54
  • [37] Feature Selection and Parameter Optimization of a Fuzzy-based Stock Selection Model Using Genetic Algorithms
    Huang, Chien-Feng
    Chang, Bao Rong
    Cheng, Dun-Wei
    Chang, Chih-Hsiang
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2012, 14 (01) : 65 - 75
  • [38] Identification of PV solar cells and modules parameters using the genetic algorithms: Application to maximum power extraction
    Zagrouba, M.
    Sellami, A.
    Bouaicha, M.
    Ksouri, M.
    SOLAR ENERGY, 2010, 84 (05) : 860 - 866
  • [39] Closed-loop identification of Hammerstein systems using hybrid neural model identified by genetic algorithms
    vall, O. M. Mohamed
    Radhi, M.
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE FOR MODELLING, CONTROL & AUTOMATION JOINTLY WITH INTERNATIONAL CONFERENCE ON INTELLIGENT AGENTS, WEB TECHNOLOGIES & INTERNET COMMERCE, VOL 2, PROCEEDINGS, 2006, : 1027 - +
  • [40] Automated mathematical modelling, simulation and behavior identification of robotic dynamic systems using a new fuzzy-fractal-genetic approach
    Castillo, O
    Melin, P
    ROBOTICS AND AUTONOMOUS SYSTEMS, 1999, 28 (01) : 19 - 30