Mathematical modelling for coal fired supercritical power plants and model parameter identification using genetic algorithms

被引:4
作者
Mohamed O. [1 ]
Wang J. [1 ]
Guo S. [1 ]
Wei J. [1 ]
Al-Duri B. [2 ]
Lv J. [3 ]
Gao Q. [3 ]
机构
[1] School of Electrical, Electronics, and Computer Engineering, University of Birmingham, Edgbaston
[2] School of Chemical Engineering, University of Birmingham, Edgbaston
[3] Department of Thermal Engineering, Tsinghua University, Beijing
来源
Lecture Notes in Electrical Engineering | 2011年 / 90 LNEE卷
基金
英国工程与自然科学研究理事会;
关键词
Coal-fired power generation; Genetic algorithms; Mathematical modeling; Supercritical boiler;
D O I
10.1007/978-94-007-1192-1_1
中图分类号
学科分类号
摘要
The paper presents the progress of our study of the whole process mathematical model for a supercritical coal-fired power plant. The modelling procedure is rooted from thermodynamic and engineering principles with reference to the previously published literatures. Model unknown parameters are identified using Genetic Algorithms (GAs) with 600MW supercritical power plant on-site measurement data. The identified parameters are verified with different sets of measured plant data. Although some assumptions are made in the modelling process to simplify the model structure at a certain level, the supercritical coal-fired power plant model reported in the paper can represent the main features of the real plant once-through unit operation and the simulation results show that the main variation trends of the process have good agreement with the measured dynamic responses from the power plants. © 2011 Springer Science+Business Media B.V.
引用
收藏
页码:1 / 13
页数:12
相关论文
共 45 条
  • [21] Parameter optimization for growth model of greenhouse crop using genetic algorithms
    Dai, Chunni
    Yao, Meng
    Xie, Zhujie
    Chen, Chunhong
    Liu, Jingao
    APPLIED SOFT COMPUTING, 2009, 9 (01) : 13 - 19
  • [22] Identification of a small unmanned helicopter model using genetic algorithms
    del Cerro, J
    Valero, J
    Barrientos, A
    2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vols 1-4, 2005, : 622 - 627
  • [23] Parameter Identification and Sliding Pressure Control of a Supercritical Power Plant Using Whale Optimizer
    Qasem, Mohammad
    Mohamed, Omar
    Abu Elhaija, Wejdan
    SUSTAINABILITY, 2022, 14 (13)
  • [24] Power density axial oscillations induced by xenon dynamics: Parameter identification via genetic algorithms
    Marseguerra, M
    Zio, E
    Torri, G
    PROGRESS IN NUCLEAR ENERGY, 2003, 43 (1-4) : 365 - 372
  • [25] A fuzzy satisficing method for electric power plant coal purchase using genetic algorithms
    Shiromaru, I
    Inuiguchi, M
    Sakawa, M
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2000, 126 (01) : 218 - 230
  • [26] Identification of the Nonlinear Model Proposed by the MIT for Power Transformers by Applying Genetic Algorithms
    Perez, R.
    Matos, E.
    Fernandez, S.
    IEEE LATIN AMERICA TRANSACTIONS, 2009, 7 (06) : 636 - 642
  • [27] Modelling, Parameter Identification, and Experimental Validation of a Lead Acid Battery Bank Using Evolutionary Algorithms
    Ariza Chacon, H. Eduardo
    Banguero, Edison
    Correcher, Antonio
    Perez-Navarro, Angel
    Morant, Francisco
    ENERGIES, 2018, 11 (09)
  • [28] Identification of Electrical Parameters in a Power Network Using Genetic Algorithms and Transient Measurements
    Dong, Wei
    Zanchetta, Pericle
    Thomas, David W. P.
    2008 13TH INTERNATIONAL POWER ELECTRONICS AND MOTION CONTROL CONFERENCE, VOLS 1-5, 2008, : 1716 - 1721
  • [29] Thermoeconomic optimization of combined cycle gas turbine power plants using genetic algorithms
    Valdés, M
    Durán, MD
    Rovira, A
    APPLIED THERMAL ENGINEERING, 2003, 23 (17) : 2169 - 2182
  • [30] Parameter estimation and validation of power transformers top oil temperature model by applying genetic algorithms
    Perez B, Romulo J.
    Matos Alfonso, Enrique
    Fernandez, Sergio J.
    REVISTA TECNICA DE LA FACULTAD DE INGENIERIA UNIVERSIDAD DEL ZULIA, 2009, 32 (03): : 266 - 275