Perturbation finite volume method for convective-diffusion integral equation

被引:0
|
作者
Gao, Zhi [1 ]
Yang, Guowei [1 ]
机构
[1] Lab. of High Temp. Gas Dynamics, Inst. of Mech., Beijing 100080, China
来源
Acta Mechanica Sinica/Lixue Xuebao | 2004年 / 20卷 / 06期
基金
中国国家自然科学基金;
关键词
Finite volume method - Heat transfer - Integral equations - Interpolation - Perturbation techniques - Three dimensional - Two dimensional;
D O I
10.1007/bf02485861
中图分类号
学科分类号
摘要
A perturbation finite volume (PFV) method for the convective-diffusion integral equation is developed in this paper. The PFV scheme is an upwind and mixed scheme using any higher-order interpolation and second-order integration approximations, with the least nodes similar to the standard three-point schemes, that is, the number of the nodes needed is equal to unity plus the face-number of the control volume. For instance, in the two-dimensional (2-D) case, only four nodes for the triangle grids and five nodes for the Cartesian grids are utilized, respectively. The PFV scheme is applied on a number of 1-D linear and nonlinear problems, 2-D and 3-D flow model equations. Comparing with other standard three-point schemes, the PFV scheme has much smaller numerical diffusion than the first-order upwind scheme (UDS). Its numerical accuracies are also higher than the second-order central scheme (CDS), the power-law scheme (PLS) and QUICK scheme.
引用
收藏
页码:580 / 590
相关论文
共 50 条
  • [1] PERTURBATION FINITE VOLUME METHOD FOR CONVECTIVE-DIFFUSION INTEGRAL EQUATION
    高智
    杨国伟
    Acta Mechanica Sinica, 2004, (06) : 580 - 590
  • [2] Perturbation finite volume method for convective-diffusion integral equation
    Gao, Z
    Yang, GW
    ACTA MECHANICA SINICA, 2004, 20 (06) : 580 - 590
  • [3] Perturbation finite volume method for convective-diffusion integral equation
    Gao Zhi
    Yang Guowei
    Acta Mechanica Sinica, 2004, 20 (6) : 580 - 590
  • [4] Analysis and Application of High Resolution Numerical Perturbation Algorithm for Convective-Diffusion Equation
    Gao Zhi
    Shen Yi-Qing
    CHINESE PHYSICS LETTERS, 2012, 29 (10)
  • [5] A corrected method to solve the convective-diffusion equation based on SIMPLE
    Li, Zheng
    Yang, Mo
    Wang, Zhi-Yun
    Zhang, Yu-Wen
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2012, 33 (09): : 1563 - 1566
  • [6] A SOLUTION-SCHEME FOR THE CONVECTIVE-DIFFUSION EQUATION
    SULLIVAN, PJ
    YIP, H
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1985, 36 (04): : 596 - 608
  • [7] Stability analysis for discretized steady convective-diffusion equation
    Ni, MJ
    Tao, WQ
    Wang, SJ
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 1999, 35 (03) : 369 - 388
  • [8] Generalized Lax-Friedrichs Scheme for Convective-Diffusion Equation
    Tong, Wei
    Wu, Yun
    INFORMATION COMPUTING AND APPLICATIONS, PT 1, 2012, 307 : 321 - 328
  • [9] Analyzing Sequential Betting with a Kelly-Inspired Convective-Diffusion Equation
    Velegol, Darrell
    Bishop, Kyle J. M.
    ENTROPY, 2024, 26 (07)
  • [10] STABILITY ANALYSIS OF 6-POINT FINITE-DIFFERENCE SCHEMES FOR THE CONSTANT COEFFICIENT CONVECTIVE-DIFFUSION EQUATION
    KWOK, YK
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1992, 23 (12) : 3 - 11