Unsupervised Multi-Scale Hybrid Feature Extraction Network for Semantic Segmentation of High-Resolution Remote Sensing Images

被引:2
|
作者
Song, Wanying [1 ]
Nie, Fangxin [1 ]
Wang, Chi [1 ]
Jiang, Yinyin [1 ]
Wu, Yan [2 ]
机构
[1] Xian Univ Sci & Technol, Sch Commun & Informat Engn, Xian Key Lab Network Convergence Commun, Xian 710054, Peoples R China
[2] Xidian Univ, Sch Elect Engn, Xian 710071, Peoples R China
基金
中国博士后科学基金;
关键词
high-resolution remote sensing; unsupervised; semantic segmentation; global context information; fine-grained features; feature fusion;
D O I
10.3390/rs16203774
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Generating pixel-level annotations for semantic segmentation tasks of high-resolution remote sensing images is both time-consuming and labor-intensive, which has led to increased interest in unsupervised methods. Therefore, in this paper, we propose an unsupervised multi-scale hybrid feature extraction network based on the CNN-Transformer architecture, referred to as MSHFE-Net. The MSHFE-Net consists of three main modules: a Multi-Scale Pixel-Guided CNN Encoder, a Multi-Scale Aggregation Transformer Encoder, and a Parallel Attention Fusion Module. The Multi-Scale Pixel-Guided CNN Encoder is designed for multi-scale, fine-grained feature extraction in unsupervised tasks, efficiently recovering local spatial information in images. Meanwhile, the Multi-Scale Aggregation Transformer Encoder introduces a multi-scale aggregation module, which further enhances the unsupervised acquisition of multi-scale contextual information, obtaining global features with stronger feature representation. The Parallel Attention Fusion Module employs an attention mechanism to fuse global and local features in both channel and spatial dimensions in parallel, enriching the semantic relations extracted during unsupervised training and improving the performance of unsupervised semantic segmentation. K-means clustering is then performed on the fused features to achieve high-precision unsupervised semantic segmentation. Experiments with MSHFE-Net on the Potsdam and Vaihingen datasets demonstrate its effectiveness in significantly improving the accuracy of unsupervised semantic segmentation.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] HCANet: A Hierarchical Context Aggregation Network for Semantic Segmentation of High-Resolution Remote Sensing Images
    Bai, Haiwei
    Cheng, Jian
    Huang, Xia
    Liu, Siyu
    Deng, Changjian
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [42] Scale-Aware Neural Network for Semantic Segmentation of Multi-Resolution Remote Sensing Images
    Wang, Libo
    Zhang, Ce
    Li, Rui
    Duan, Chenxi
    Meng, Xiaoliang
    Atkinson, Peter M.
    REMOTE SENSING, 2021, 13 (24)
  • [43] GLF-Net: A Semantic Segmentation Model Fusing Global and Local Features for High-Resolution Remote Sensing Images
    Song, Wanying
    Zhou, Xinwei
    Zhang, Shiru
    Wu, Yan
    Zhang, Peng
    REMOTE SENSING, 2023, 15 (19)
  • [44] HBRNet: Boundary Enhancement Segmentation Network for Cropland Extraction in High-Resolution Remote Sensing Images
    Sheng, Jiajia
    Sun, Youqiang
    Huang, He
    Xu, Wenyu
    Pei, Haotian
    Zhang, Wei
    Wu, Xiaowei
    AGRICULTURE-BASEL, 2022, 12 (08):
  • [45] SEMANTIC SEGMENTATION OF HIGH-RESOLUTION REMOTE SENSING IMAGES USING AN IMPROVED TRANSFORMER
    Liu, Yuheng
    Mei, Shaohui
    Zhang, Shun
    Wang, Ye
    He, Mingyi
    Du, Qian
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 3496 - 3499
  • [46] Scene Classification of High-Resolution Remote Sensing Image by Multi-scale and Multi-feature Fusion
    Huang H.
    Xu K.-J.
    Shi G.-Y.
    Huang, Hong (hhuang@cqu.edu.cn), 1824, Chinese Institute of Electronics (48): : 1824 - 1833
  • [47] MsanlfNet: Semantic Segmentation Network With Multiscale Attention and Nonlocal Filters for High-Resolution Remote Sensing Images
    Bai, Lin
    Lin, Xiangyuan
    Ye, Zhen
    Xue, Dongling
    Yao, Cheng
    Hui, Meng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [48] SCAttNet: Semantic Segmentation Network With Spatial and Channel Attention Mechanism for High-Resolution Remote Sensing Images
    Li, Haifeng
    Qiu, Kaijian
    Chen, Li
    Mei, Xiaoming
    Hong, Liang
    Tao, Chao
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (05) : 905 - 909
  • [49] Semantic segmentation of high-resolution remote sensing images using fully convolutional network with adaptive threshold
    Wu, Zhihuan
    Gao, Yongming
    Li, Lei
    Xue, Junshi
    Li, Yuntao
    CONNECTION SCIENCE, 2019, 31 (02) : 169 - 184
  • [50] Building Multi-Feature Fusion Refined Network for Building Extraction from High-Resolution Remote Sensing Images
    Ran, Shuhao
    Gao, Xianjun
    Yang, Yuanwei
    Li, Shaohua
    Zhang, Guangbin
    Wang, Ping
    REMOTE SENSING, 2021, 13 (14)