Modeling and analysis of dielectric materials by using gradient-descent optimization method

被引:5
作者
Alagoz B.B. [1 ]
Alisoy H.Z. [2 ]
Koseoglu M. [1 ]
Alagoz S. [3 ]
机构
[1] Electrical-Electronics Engineering, Inonu University
[2] Electronics and Communication Engineering, Namik Kemal University
[3] Department of Physics, Inonu University
关键词
Dielectric materials; insulators; modeling; numerical analysis;
D O I
10.1142/S1793962317500143
中图分类号
学科分类号
摘要
This study presents a numerical method based on parallel RC equivalent circuit model fitting methodology for analysis and modeling of dielectric materials. The proposed method employs gradient-descent optimization method (GDOM) to estimate parallel RC equivalent circuit model from current waveforms by minimizing sum of squared difference (SSD) error. Estimation of parallel RC equivalent circuit parameters from measured current waveforms provides a useful tool for identification, simulation and analysis of dielectric materials. Moreover, applications of the proposed method for time and frequency analyses of dielectric materials are demonstrated numerically. Numerical simulations were presented to discuss efficiency of the proposed method for modeling, analysis and monitoring of insulator materials. © 2017 World Scientific Publishing Company.
引用
收藏
相关论文
共 33 条
[21]  
Du Yong B L., Liu H.J., Yang Y.J., Recurrent plot analysis of leakage current for monitoring outdoor insulator performance, IEEE Trans. Dielectr. Electr. Insul., 16, pp. 139-146, (2009)
[22]  
Lunkenheimer P., Fichtl R., Ebbinghaus S.G., Loidl A., Non-intrinsic origin of the colossal dielectric constants in Ca Cu3 Ti4 O12, Phys. Rev. B, 70, (2004)
[23]  
Cao Y., Groves R.A., Huang X., Zamdmer N.D., Plouchart J.O., Wachnik R.A., King T.J., Hu C., 0Frequency-independent equivalent-circuit model for on-chip spiral inductors, IEEE J. Solid-State Circuits, 38, pp. 419-425, (2003)
[24]  
Hodge I.M., Ingram M.D., West A.R., Impedance and modulus spectroscopy of polycrystalline solid electrolytes, J. Electroanal. Chem. Interfacial Electrochem., 74, pp. 125-143, (1976)
[25]  
Langemann D., Modelling a droplet moving in an electric field, Math. Comput. Simul., 68, pp. 157-169, (2005)
[26]  
Melot M., Trepanier J.Y., Camarero R., Petro E., Comparison of numerical models in radiative heat transfer with application to circuit-breaker simulations, Math. Comput. Simul., 82, pp. 2982-2996, (2012)
[27]  
Bussey H.E., Measurement of rf properties of materials: A survey, Proc. IEEE, 55, pp. 1046-1053, (1967)
[28]  
Hartshorn L., Ward W.H., The measurement of the permittivity and power factor of dielectrics at frequencies 104 to 108 cycles per second, J. Inst. Elec. Eng., 79, pp. 597-609, (1936)
[29]  
Jenkins S., Hodgetts T.E., Clarke R.N., Preece A.W., Dielectric measurements on reference liquids using automatic network analyzers and calculable geometries, Meas. Sci. Tech., 1, pp. 691-702, (1990)
[30]  
Clarke R.N., Gregory A.P., Cannell D., Patrick M., Wylie S., Youngs I., Hill G., A Guide to the Dielectric Characterisation of Materials at RF and Microwave Frequencies, Institute of Measurement and Control/National Physical Laboratory PDB, (2003)