A modified artificial bee colony algorithm for global optimization problem

被引:0
|
作者
Liu X.-F. [1 ]
Liu P.-Z. [1 ]
Luo Y.-M. [2 ]
Tang J.-N. [1 ]
Huang D.-T. [1 ]
Du Y.-Z. [1 ]
机构
[1] College of Engineering, Huaqiao University, Quanzhou, Fujian
[2] College of Computer Science and Technology, Huaqiao University, Xiamen, Fujian
关键词
Artificial bee colony algorithm; High dimension chaotic system; Learning probability; Numerical optimization; Search equation;
D O I
10.3966/199115992018012901020
中图分类号
学科分类号
摘要
The artificial bee colony algorithm (ABC) is a kind of stochastic optimization algorithm, which is used to solve optimization problems. In view of the shortcomings of basic ABC with slow convergence and easily falling into local optimum, a modified artificial bee colony algorithm (MABC) is proposed. First, a high dimension chaotic system is employed for the sake of improving the population diversity and enhancing the global search ability of the algorithm when the initial population is produced and scout bee stage. Second, a new search equation is proposed based on the differential evolution (DE) algorithm, which is guided by the optimal solution in the next generation of search direction to improve the local search. Finally, a learning probability (P) method is introduced, corresponding to different value with each particle. Thus, the capacity of the exploration and exploitation of each particle in the population is different, which can solve different types of problems. The performance of proposed approach was examined on well-known 10 benchmark functions, and results are compared with basic ABC and other ABCs. As documented in the experimental results, the proposed approach is very effective in solving benchmark functions, and is successful in terms of solution quality and convergence to global optimum. © 2018 Computer Society of the Republic of China. All rights reserved.
引用
收藏
页码:228 / 241
页数:13
相关论文
共 50 条
  • [1] A global best artificial bee colony algorithm for global optimization
    Gao, Weifeng
    Liu, Sanyang
    Huang, Lingling
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (11) : 2741 - 2753
  • [2] An adaptive artificial bee colony algorithm for global optimization
    Yurtkuran, Alkin
    Emel, Erdal
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 271 : 1004 - 1023
  • [3] Improved artificial bee colony algorithm for global optimization
    Gao, Weifeng
    Liu, Sanyang
    INFORMATION PROCESSING LETTERS, 2011, 111 (17) : 871 - 882
  • [4] Reduction of artificial bee colony algorithm for global optimization
    Maeda, Michiharu
    Tsuda, Shinya
    NEUROCOMPUTING, 2015, 148 : 70 - 74
  • [5] A Novel Artificial Bee Colony Algorithm for Global Optimization
    Yazdani, Donya
    Meybodi, Mohammad Reza
    2014 4TH INTERNATIONAL CONFERENCE ON COMPUTER AND KNOWLEDGE ENGINEERING (ICCKE), 2014, : 443 - 448
  • [6] Differential Artificial Bee Colony Algorithm for Global Numerical Optimization
    Wu, Bin
    Qian, Cun Hua
    JOURNAL OF COMPUTERS, 2011, 6 (05) : 841 - 848
  • [7] An Adaptive Unified Artificial Bee Colony Algorithm for Global Optimization
    Yang, Yang
    Xu, Feiyi
    Hu, Haidong
    Gao, Hao
    PROCEEDINGS OF THE 30TH CHINESE CONTROL AND DECISION CONFERENCE (2018 CCDC), 2018, : 5497 - 5502
  • [8] A modified artificial bee colony algorithm
    Gao, Wei-feng
    Liu, San-yang
    COMPUTERS & OPERATIONS RESEARCH, 2012, 39 (03) : 687 - 697
  • [9] A new modified artificial bee colony algorithm for the economic dispatch problem
    Secui, Dinu Calin
    ENERGY CONVERSION AND MANAGEMENT, 2015, 89 : 43 - 62
  • [10] Modified Artificial Bee Colony Algorithm for the Capacitated Vehicle Routing Problem
    Ding, Hao
    Cheng, Hui-jin
    Shan, Xian
    2018 2ND INTERNATIONAL CONFERENCE ON ADVANCES IN MANAGEMENT SCIENCE AND ENGINEERING (AMSE 2018), 2018, 292 : 197 - 201