3D hybrid fluid-particle jet simulations and the importance of synchrotron radiative losses

被引:0
作者
Kramer, Joana A. [1 ,2 ]
MacDonald, Nicholas R. [1 ,3 ]
Paraschos, Georgios F. [1 ]
Ricci, Luca [1 ,4 ]
机构
[1] Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany
[2] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA
[3] Univ Mississippi, Dept Phys & Astron, 108 Lewis Hall, Oxford, MS 38677 USA
[4] Julius Maximilians Univ Wurzburg, Inst Theoret Phys & Astrophys, Lehrstuhl Astron, Emil Fischer Str 31, D-97074 Wurzburg, Germany
基金
欧洲研究理事会;
关键词
magnetohydrodynamics (MHD); radiation mechanisms: non-thermal; radiative transfer; relativistic processes; methods: numerical; galaxies: jets; ACTIVE GALACTIC NUCLEI; LINEAR-POLARIZATION; BLACK-HOLE; AGN JETS; NONTHERMAL EMISSION; SPECTRAL EVOLUTION; MAGNETIC-FIELD; COSMIC-RAYS; HOT-SPOTS; RADIO;
D O I
10.1051/0004-6361/202450978
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. Relativistic jets in active galactic nuclei are known for their exceptional energy output, and imaging the synthetic synchrotron emission of numerical jet simulations is essential for a comparison with observed jet polarization emission. Aims. Through the use of 3D hybrid fluid-particle jet simulations (with the PLUTO code), we overcome some of the commonly made assumptions in relativistic magnetohydrodynamic (RMHD) simulations by using non-thermal particle attributes to account for the resulting synchrotron radiation. Polarized radiative transfer and ray-tracing (via the RADMC-3D code) highlight the differences in total intensity maps when (i) the jet is simulated purely with the RMHD approach, (ii) a jet tracer is considered in the RMHD approach, and (iii) a hybrid fluid-particle approach is used. The resulting emission maps were compared to the example of the radio galaxy Centaurus A. Methods. We applied the Lagrangian particle module implemented in the latest version of the PLUTO code. This new module contains a state-of-the-art algorithm for modeling diffusive shock acceleration and for accounting for radiative losses in RMHD jet simulations. The module implements the physical postulates missing in RMHD jet simulations by accounting for a cooled ambient medium and strengthening the central jet emission. Results. We find a distinction between the innermost structure of the jet and the back-flowing material by mimicking the radio emission of the Seyfert II radio galaxy Centaurus A when considering an edge-brightened jet with an underlying purely toroidal magnetic field. We demonstrate the necessity of synchrotron cooling as well as the improvements gained when directly accounting for non-thermal synchrotron radiation via non-thermal particles.
引用
收藏
页数:12
相关论文
共 49 条
  • [31] Effects of non-grey radiative transfer on 3D simulations of solar magneto-convection
    Vögler, A
    [J]. ASTRONOMY & ASTROPHYSICS, 2004, 421 (02): : 755 - 762
  • [32] Excitation and evolution of coronal oscillations in self-consistent 3D radiative MHD simulations of the solar atmosphere
    Kohutova, P.
    Popovas, A.
    [J]. ASTRONOMY & ASTROPHYSICS, 2021, 647
  • [33] Spectral and imaging properties of Sgr A* from high-resolution 3D GRMHD simulations with radiative cooling
    Yoon, D.
    Chatterjee, K.
    Markoff, S. B.
    van Eijnatten, D.
    Younsi, Z.
    Liska, M.
    Tchekhovskoy, A.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 499 (03) : 3178 - 3192
  • [34] Turbulence versus Fire-hose Instabilities: 3D Hybrid Expanding Box Simulations
    Hellinger, Petr
    Matteini, Lorenzo
    Landi, Simone
    Franci, Luca
    Verdini, Andrea
    Papini, Emanuele
    [J]. ASTROPHYSICAL JOURNAL, 2019, 883 (02)
  • [35] Solar Wind Turbulent Cascade from MHD to Sub-ion Scales: Large-size 3D Hybrid Particle-in-cell Simulations
    Franci, Luca
    Landi, Simone
    Verdini, Andrea
    Matteini, Lorenzo
    Hellinger, Petr
    [J]. ASTROPHYSICAL JOURNAL, 2018, 853 (01)
  • [36] Overcast on Osiris: 3D radiative-hydrodynamical simulations of a cloudy hot Jupiter using the parametrized, phase-equilibrium cloud formation code EDDYSED
    Lines, S.
    Mayne, N. J.
    Manners, J.
    Boutle, I. A.
    Drummond, B.
    Mikal-Evans, T.
    Kohary, K.
    Sing, D. K.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 488 (01) : 1332 - 1355
  • [37] On MHD 3D upper convected Maxwell fluid flow with thermophoretic effect using nonlinear radiative heat flux
    Bilal, M.
    Sagheer, M.
    Hussain, S.
    [J]. CANADIAN JOURNAL OF PHYSICS, 2018, 96 (01) : 1 - 10
  • [38] Non-thermal water loss of the early Mars: 3D multi-ion hybrid simulations
    Boesswetter, A.
    Lammer, H.
    Kulikov, Y.
    Motschmann, U.
    Simon, S.
    [J]. PLANETARY AND SPACE SCIENCE, 2010, 58 (14-15) : 2031 - 2043
  • [39] 2D full-wave simulations of conventional reflectometry using 3D gyro-fluid plasma turbulence
    Vicente, J.
    Ribeiro, T.
    Da Silva, F.
    Heuraux, S.
    Conway, G. D.
    Scott, B.
    Silva, C.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2020, 62 (02)
  • [40] Hubble Space Telescope scale 3D simulations of MHD disc winds: a rotating two-component jet structure
    Staff, J. E.
    Koning, N.
    Ouyed, R.
    Thompson, A.
    Pudritz, R. E.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 446 (04) : 3975 - 3991