Modeling Temperature-Dependent Photoluminescence Dynamics of Colloidal CdS Quantum Dots Using Long Short-Term Memory (LSTM) Networks

被引:0
|
作者
Malashin, Ivan [1 ]
Daibagya, Daniil [1 ,2 ]
Tynchenko, Vadim [1 ]
Nelyub, Vladimir [1 ,3 ]
Borodulin, Aleksei [1 ]
Gantimurov, Andrei [1 ]
Selyukov, Alexandr [1 ]
Ambrozevich, Sergey [1 ]
Smirnov, Mikhail [4 ]
Ovchinnikov, Oleg [4 ]
机构
[1] Bauman Moscow State Tech Univ, Ctr Continuing Educ, Moscow 105005, Russia
[2] Russian Acad Sci, PN Lebedev Phys Inst, Moscow 119991, Russia
[3] Far Eastern Fed Univ, Sci Dept, Vladivostok 690922, Russia
[4] Voronezh State Univ, Dept Phys, Voronezh 394018, Russia
关键词
CdS; quantum dots; photoluminescence; temperature dependence; LSTM; BAND; LUMINESCENCE; ENERGY;
D O I
10.3390/ma17205056
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This study addresses the challenge of modeling temperature-dependent photoluminescence (PL) in CdS colloidal quantum dots (QD), where PL properties fluctuate with temperature, complicating traditional modeling approaches. The objective is to develop a predictive model capable of accurately capturing these variations using Long Short-Term Memory (LSTM) networks, which are well suited for managing temporal dependencies in time-series data. The methodology involved training the LSTM model on experimental time-series data of PL intensity and temperature. Through numerical simulation, the model's performance was assessed. Results demonstrated that the LSTM-based model effectively predicted PL trends under different temperature conditions. This approach could be applied in optoelectronics and quantum dot-based sensors for enhanced forecasting capabilities.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] Estimation of Lower-Stratosphere-to-Troposphere Ozone Profile Using Long Short-Term Memory (LSTM)
    Zhang, Xinxin
    Zhang, Ying
    Lu, Xiaoyan
    Bai, Lu
    Chen, Liangfu
    Tao, Jinhua
    Wang, Zhibao
    Zhu, Lili
    REMOTE SENSING, 2021, 13 (07)
  • [32] Prediction of dengue cases using the attention-based long short-term memory (LSTM) approach
    Majeed, Mokhalad A.
    Shafri, Helmi Z. M.
    Wayayok, Aimrun
    Zulkafli, Zed
    GEOSPATIAL HEALTH, 2023, 18 (01)
  • [33] Deep long short-term memory (LSTM) networks for ultrasonic-based distributed damage assessment in concrete
    Ranjbar, Iman
    Toufigh, Vahab
    CEMENT AND CONCRETE RESEARCH, 2022, 162
  • [34] Bayesian-Optimization-Based Long Short-Term Memory (LSTM) Super Learner Approach for Modeling Long-Term Electricity Consumption
    Almuhaini, Salma Hamad
    Sultana, Nahid
    SUSTAINABILITY, 2023, 15 (18)
  • [35] Forecasting Methane Data Using Multivariate Long Short-Term Memory Neural Networks
    Luo, Ran
    Wang, Jingyi
    Gates, Ian
    ENVIRONMENTAL MODELING & ASSESSMENT, 2024, 29 (03) : 441 - 454
  • [36] Classification of Antibacterial Peptides Using Long Short-Term Memory Recurrent Neural Networks
    Youmans, Michael
    Spainhour, John C. G.
    Qiu, Peng
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2020, 17 (04) : 1134 - 1140
  • [37] Prediction of Pathological Tremor Signals Using Long Short-Term Memory Neural Networks
    Pascual-Valdunciel, Alejandro
    Lopo-Martinez, Victor
    Sendra-Arranz, Rafael
    Gonzalez-Sanchez, Miguel
    Perez-Sanchez, Javier Ricardo
    Grandas, Francisco
    Torricelli, Diego
    Moreno, Juan C.
    Oliveira Barroso, Filipe
    Pons, Jose L.
    Gutierrez, Alvaro
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (12) : 5930 - 5941
  • [38] Intrusion Detection Using Multilayer Perceptron and Neural Networks with Long Short-Term Memory
    Borisenko, B. B.
    Erokhin, S. D.
    Fadeev, A. S.
    Martishin, I. D.
    2021 SYSTEMS OF SIGNAL SYNCHRONIZATION, GENERATING AND PROCESSING IN TELECOMMUNICATIONS (SYNCHROINFO), 2021,
  • [39] Multimodal Continuous Prediction of Emotions in Movies using Long Short-Term Memory Networks
    Sivaprasad, Sarath
    Joshi, Tanmayee
    Agrawal, Rishabh
    Pedanekar, Niranjan
    ICMR '18: PROCEEDINGS OF THE 2018 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, 2018, : 413 - 419
  • [40] Automatic Pitch Accent Detection Using Long Short-Term Memory Neural Networks
    Wu, Yizhi
    Li, Sha
    Li, Hongyan
    2019 INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING SYSTEMS (SPSS 2019), 2019, : 41 - 45