Modeling Temperature-Dependent Photoluminescence Dynamics of Colloidal CdS Quantum Dots Using Long Short-Term Memory (LSTM) Networks

被引:0
|
作者
Malashin, Ivan [1 ]
Daibagya, Daniil [1 ,2 ]
Tynchenko, Vadim [1 ]
Nelyub, Vladimir [1 ,3 ]
Borodulin, Aleksei [1 ]
Gantimurov, Andrei [1 ]
Selyukov, Alexandr [1 ]
Ambrozevich, Sergey [1 ]
Smirnov, Mikhail [4 ]
Ovchinnikov, Oleg [4 ]
机构
[1] Bauman Moscow State Tech Univ, Ctr Continuing Educ, Moscow 105005, Russia
[2] Russian Acad Sci, PN Lebedev Phys Inst, Moscow 119991, Russia
[3] Far Eastern Fed Univ, Sci Dept, Vladivostok 690922, Russia
[4] Voronezh State Univ, Dept Phys, Voronezh 394018, Russia
关键词
CdS; quantum dots; photoluminescence; temperature dependence; LSTM; BAND; LUMINESCENCE; ENERGY;
D O I
10.3390/ma17205056
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This study addresses the challenge of modeling temperature-dependent photoluminescence (PL) in CdS colloidal quantum dots (QD), where PL properties fluctuate with temperature, complicating traditional modeling approaches. The objective is to develop a predictive model capable of accurately capturing these variations using Long Short-Term Memory (LSTM) networks, which are well suited for managing temporal dependencies in time-series data. The methodology involved training the LSTM model on experimental time-series data of PL intensity and temperature. Through numerical simulation, the model's performance was assessed. Results demonstrated that the LSTM-based model effectively predicted PL trends under different temperature conditions. This approach could be applied in optoelectronics and quantum dot-based sensors for enhanced forecasting capabilities.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Temperature-Dependent Photoluminescence of CdS/ZnS Core/Shell Quantum Dots for Temperature Sensors
    Tang, Luping
    Zhang, Yangyang
    Liao, Chen
    Guo, Yingqing
    Lu, Yingtao
    Xia, Yixuan
    Liu, Yiwei
    SENSORS, 2022, 22 (22)
  • [2] Niederschlags-Abfluss-Modellierung mit Long Short-Term Memory (LSTM)Rainfall-Runoff modeling with Long Short-Term Memory Networks (LSTM)—an overview
    Frederik Kratzert
    Martin Gauch
    Grey Nearing
    Sepp Hochreiter
    Daniel Klotz
    Österreichische Wasser- und Abfallwirtschaft, 2021, 73 (7-8) : 270 - 280
  • [3] Exploring temperature-dependent photoluminescence dynamics of colloidal CdSe nanoplatelets using machine learning approach
    Malashin, Ivan P.
    Daibagya, Daniil
    Tynchenko, Vadim
    Nelyub, Vladimir
    Borodulin, Aleksei
    Gantimurov, Andrei
    Selyukov, Alexandr
    Ambrozevich, Sergey
    Vasiliev, Roman
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [4] Development of a Regional Gridded Runoff Dataset Using Long Short-Term Memory (LSTM) Networks
    Ayzel, Georgy
    Kurochkina, Liubov
    Abramov, Dmitriy
    Zhuravlev, Sergei
    HYDROLOGY, 2021, 8 (01) : 1 - 19
  • [5] Temperature-Dependent Photoluminescence of CdSe-Core CdS/CdZnS/ZnS-Multishell Quantum Dots
    Jing, Pengtao
    Zheng, Jinju
    Ikezawa, Micho
    Liu, Xueyan
    Lv, Shaozhe
    Kong, Xianggui
    Zhao, Jialong
    Masumoto, Yasuaki
    JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (31) : 13545 - 13550
  • [6] Applications of Long Short-Term Memory (LSTM) Networks in Polymeric Sciences: A Review
    Malashin, Ivan
    Tynchenko, Vadim
    Gantimurov, Andrei
    Nelyub, Vladimir
    Borodulin, Aleksei
    POLYMERS, 2024, 16 (18)
  • [7] Intrusion detection systems using long short-term memory (LSTM)
    Laghrissi, FatimaEzzahra
    Douzi, Samira
    Douzi, Khadija
    Hssina, Badr
    JOURNAL OF BIG DATA, 2021, 8 (01)
  • [8] Intrusion detection systems using long short-term memory (LSTM)
    FatimaEzzahra Laghrissi
    Samira Douzi
    Khadija Douzi
    Badr Hssina
    Journal of Big Data, 8
  • [9] Short-Term Traffic Prediction Using Long Short-Term Memory Neural Networks
    Abbas, Zainab
    Al-Shishtawy, Ahmad
    Girdzijauskas, Sarunas
    Vlassov, Vladimir
    2018 IEEE INTERNATIONAL CONGRESS ON BIG DATA (IEEE BIGDATA CONGRESS), 2018, : 57 - 65
  • [10] Language Modeling Using Part-of-speech and Long Short-Term Memory Networks
    Norouzi, Sanaz Saki
    Akbari, Ahmad
    Nasersharif, Babak
    2019 9TH INTERNATIONAL CONFERENCE ON COMPUTER AND KNOWLEDGE ENGINEERING (ICCKE 2019), 2019, : 182 - 187