共 28 条
[21]
Song Y.-Y., Ying L., Decision tree methods: applications for classification and prediction, Shanghai archives of psy- chiatry, 27, 2, (2015)
[22]
Dreiseitl S., Ohno-Machado L., Logistic regression and artificial neural network classification models: a method- ology review, Journal of biomedical informatics, 35, 5-6, pp. 352-359, (2002)
[23]
Breiman L., Bagging predictors, Machine learning, 24, pp. 123-140, (1996)
[24]
Ferreira A. J., Figueiredo M. A., Boosting algorithms: A review of methods, theory, and applications, Ensemble ma- chine learning: Methods and applications, pp. 35-85, (2012)
[25]
Guryanov A., Histogram-based algorithm for building gradient boosting ensembles of piecewise linear decision trees, Analysis of Images, Social Networks and Texts: 8th Inter- national Conference, AIST 2019, pp. 39-50, (2019)
[26]
Dorogush A. V., Ershov V., Gulin A., Catboost: gradient boosting with categorical features support, (2018)
[27]
Pal M., Random forest classifier for remote sensing classification, International journal of remote sensing, 26, 1, pp. 217-222, (2005)
[28]
Kim Y. W., Subramanian S., Gerasopoulos K., Ben-Yoav H., Wu H.-C., Quan D., Carter K., Meyer M. T., Bentley W. E., Ghodssi R., Effect of electrical energy on the efficacy of biofilm treatment using the bioelectric effect, npj Biofilms and Microbiomes, 1, 1, pp. 1-8, (2015)