共 50 条
Cu-doped Ni3S2 electrocatalyst for glycerol oxidation coupling to promote hydrogen evolution reaction
被引:1
|作者:
Wang, Qingtao
[1
]
Zhou, Xiaoling
[1
]
Jin, Hanbin
[1
]
Guo, Lulu
[1
]
Wu, Yanxia
[1
]
Ren, Shufang
[2
]
机构:
[1] Northwest Normal Univ, Coll Chem & Chem Engn, Key Lab Ecofunct Polymer Mat,Minist Educ, Key Lab Ecoenvironm Polymer Mat Gansu Prov, Lanzhou 730070, Peoples R China
[2] Gansu Univ Polit Sci & Law, Key Lab Evidence Sci Res & Applicat Gansu Prov, Lanzhou 730070, Peoples R China
来源:
基金:
中国国家自然科学基金;
关键词:
Doping;
Electrocatalysis;
Glycerol oxidation;
Hydrogen evolution;
NANOWIRE ARRAYS;
EFFICIENT;
NANOSHEETS;
SITES;
ACID;
D O I:
10.1016/j.fuel.2024.132770
中图分类号:
TE [石油、天然气工业];
TK [能源与动力工程];
学科分类号:
0807 ;
0820 ;
摘要:
Hydrogen energy is becoming increasingly important as a clean and efficient form of energy. Glycerol oxidation synergistic electrocatalytic hydrogen evolution technology is an electrochemical process that integrates anodic glycerol oxidation reaction (GOR) and cathodic hydrogen production. Compared with the oxygen evolution reaction (OER) required in the electrolysis of water for hydrogen production process, this technology can not only reduce the energy consumption of the whole reaction, but also obtain valuable by-products while producing hydrogen. In this study, we successfully prepared a copper-doped Ni3S2 (Cu-Ni3S2@NF) electrode material loaded on a nickel foam carrier by a two-stage hydrothermal synthesis method, and applied it to the bifunctional electrocatalytic reaction of GOR and hydrogen evolution reaction (HER). After a series of in-depth electrochemical performance tests, it was confirmed that 0.1Cu-Ni3S2@NF showed lower overpotential requirements when performing GOR and HER, requiring only 1.41 V relative to the reversible hydrogen electrode (RHE) to drive a current density of 100 mA cm(-2) for GOR, and only 0.56 V vs. RHE to achieve the same current density for HER. Moreover, the electrode material still maintains good stability under long-term operation. Among them, the Faraday efficiency (FE) of glycerol oxidation to formate is more than 85 %, while the FE of HER is not less than 93 %.
引用
收藏
页数:11
相关论文