Cu-doped Ni3S2 electrocatalyst for glycerol oxidation coupling to promote hydrogen evolution reaction

被引:1
|
作者
Wang, Qingtao [1 ]
Zhou, Xiaoling [1 ]
Jin, Hanbin [1 ]
Guo, Lulu [1 ]
Wu, Yanxia [1 ]
Ren, Shufang [2 ]
机构
[1] Northwest Normal Univ, Coll Chem & Chem Engn, Key Lab Ecofunct Polymer Mat,Minist Educ, Key Lab Ecoenvironm Polymer Mat Gansu Prov, Lanzhou 730070, Peoples R China
[2] Gansu Univ Polit Sci & Law, Key Lab Evidence Sci Res & Applicat Gansu Prov, Lanzhou 730070, Peoples R China
基金
中国国家自然科学基金;
关键词
Doping; Electrocatalysis; Glycerol oxidation; Hydrogen evolution; NANOWIRE ARRAYS; EFFICIENT; NANOSHEETS; SITES; ACID;
D O I
10.1016/j.fuel.2024.132770
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Hydrogen energy is becoming increasingly important as a clean and efficient form of energy. Glycerol oxidation synergistic electrocatalytic hydrogen evolution technology is an electrochemical process that integrates anodic glycerol oxidation reaction (GOR) and cathodic hydrogen production. Compared with the oxygen evolution reaction (OER) required in the electrolysis of water for hydrogen production process, this technology can not only reduce the energy consumption of the whole reaction, but also obtain valuable by-products while producing hydrogen. In this study, we successfully prepared a copper-doped Ni3S2 (Cu-Ni3S2@NF) electrode material loaded on a nickel foam carrier by a two-stage hydrothermal synthesis method, and applied it to the bifunctional electrocatalytic reaction of GOR and hydrogen evolution reaction (HER). After a series of in-depth electrochemical performance tests, it was confirmed that 0.1Cu-Ni3S2@NF showed lower overpotential requirements when performing GOR and HER, requiring only 1.41 V relative to the reversible hydrogen electrode (RHE) to drive a current density of 100 mA cm(-2) for GOR, and only 0.56 V vs. RHE to achieve the same current density for HER. Moreover, the electrode material still maintains good stability under long-term operation. Among them, the Faraday efficiency (FE) of glycerol oxidation to formate is more than 85 %, while the FE of HER is not less than 93 %.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Direct growth of hierarchically Ni3S2 nanostructures on nickel foam for enhanced hydrogen evolution reaction
    Zhong, Xiaokang
    Ali, Mure
    Wang, Xiuting
    Lu, Wanxin
    Yong, Kangle
    Feng, Delong
    Zhou, Yun
    Xu, Jie
    INDIAN JOURNAL OF CHEMISTRY, 2024, 63 (01): : 105 - 111
  • [22] A novel hierarchical MoS2-ZnO-Ni electrocatalyst prepared by electrodeposition coupling with dealloying for hydrogen evolution reaction
    Xu, Li
    Wang, Shuaipeng
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2018, 808 : 173 - 179
  • [23] Facile synthesis of Ni3S2/rGO nanosheets composite on nickel foam as efficient electrocatalyst for hydrogen evolution reaction in alkaline media
    He, Binhong
    Zhou, Minjie
    Hou, Zhaohui
    Li, Gangyong
    Kuang, Yafei
    JOURNAL OF MATERIALS RESEARCH, 2018, 33 (05) : 519 - 527
  • [24] Metal Organic Framework Derived Cu-Doped Ni2P Nanoparticles Incorporated with Porous Carbon as High Performance Electrocatalyst for Hydrogen Evolution Reaction in a Wide pH Range
    Qu, Bo
    Wei, Mengle
    Lu, Xuetao
    Zhu, Jinkun
    CHEMISTRYSELECT, 2021, 6 (45): : 12926 - 12933
  • [25] Cerium-doped nickel phosphide (Ni2P): Highly efficient electrocatalyst for hydrogen evolution reaction
    Shahroudi, Ali
    Keivanimehr, Farhad
    Habibzadeh, Sajjad
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (100) : 39885 - 39899
  • [26] Ni3S2/ball-milled silicon flour as a bi-functional electrocatalyst for hydrogen and oxygen evolution reactions
    Ensafi, Ali A.
    Jafari-Asl, Mehdi
    Nabiyan, Afshin
    Rezaei, B.
    ENERGY, 2016, 116 : 392 - 401
  • [27] Nanoengineered, Mo-Doped, Ni3S2 Electrocatalyst with Increased Ni-S Coordination for Oxygen Evolution in Alkaline Seawater
    Lan, Cheng
    Xie, Heping
    Wu, Yifan
    Chen, Bin
    Liu, Tao
    ENERGY & FUELS, 2022, 36 (05) : 2910 - 2917
  • [28] A Hybrid Electrocatalyst with a Coordinatively Unsaturated Metal-Organic Framework Shell and Hollow Ni3S2/NiS Core for Oxygen Evolution Reaction Applications
    Wang, Jingjing
    Zeng, Hua Chun
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (26) : 23180 - 23191
  • [29] Fe2O3/Ni Nanocomposite Electrocatalyst on Cellulose for Hydrogen Evolution Reaction and Oxygen Evolution Reaction
    Thangarasu, Sadhasivam
    Baby, Nimisha
    Bhosale, Mrunal
    Lee, Jaeman
    Jeong, Changseong
    Oh, Tae-Hwan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (22)
  • [30] A sulfur-doped Ni2P electrocatalyst for the hydrogen evolution reaction
    Wu, Yanxia
    Chen, Xiangping
    Su, Lirong
    Wang, Qingtao
    Ren, Shufang
    NEW JOURNAL OF CHEMISTRY, 2022, 46 (16) : 7675 - 7681