Effects of sulfurization temperature on CZTS thin film solar cell performances

被引:0
作者
机构
[1] Center for Autonomous Solar Power, State University of New York at Binghamton, Binghamton
关键词
CZTS; Earth-abundant; Solar; Sputtering;
D O I
10.1016/j.solener.2013.09.020
中图分类号
学科分类号
摘要
Synthesis of Cu2ZnSnS4 thin film solar cells by sulfurization of sputtered Sn/Zn/Cu precursors is studied. The sulfurization temperatures were varied, and the morphology, cross section, and composition of the CZTS were investigated by scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction and Raman scattering. To further explore the CZTS layer, the following additional layers were deposited to complete the solar cells: CdS with chemical bath deposition; ZnO and AZO with RF magnetron deposition; and, finally, silver fingers as the front contact. The efficiency and characteristics of the thin film solar cells were measured and a detailed comparison is reported. Sulfurization at 550°C yields a maximum efficiency of 5.75% without any anti-reflective layers. © 2013 Elsevier Ltd.
引用
收藏
页码:335 / 340
页数:5
相关论文
共 19 条
[1]  
Araki H., Mikaduki A., Kubo Y., Sato T., Jimbo K., Maw W.S., Katagiri H., Yamazaki M., Oishi K., Takeuchi A., Preparation of Cu<sub>2</sub>ZnSnS<sub>4</sub> thin films by sulfurization of stacked metallic layers, Thin Solid Films, 517, pp. 1457-1460, (2008)
[2]  
Chawla V., Clemens B., Effect of composition on high efficiency CZTSSe devices fabricated using co-sputtering of compound targets, (2012)
[3]  
Ennaoui A., Lux-Steiner M., Weber A., Abou-Ras D., Kotschau I., Schock H.-W., Schurr R., Holzing A., Jost S., Hock R., Voss T., Schulze J., Kirbs A., Cu<sub>2</sub>ZnSnS<sub>4</sub> thin film solar cells from electroplated precursors: novel low-cost perspective, Thin Solid Films, 517, pp. 2511-2514, (2009)
[4]  
Fairbrother A., Garcia-Hemme E., Izquierdo-Roca V., Fontane X., Pulgarin-Agudelo F.A., Vigil-Galan O., Perez-Rodriguez A., Saucedo E., Development of a selective chemical etch to improve the conversion efficiency of Zn-rich Cu<sub>2</sub>ZnSnS<sub>4</sub> solar cells, Journal of the American Chemical Society, 134, 19, pp. 8018-8021, (2012)
[5]  
Fernandes P.A., Salome P.M.P., da Cunha A.F., A study of ternary Cu<sub>2</sub>SnS<sub>3</sub> and Cu<sub>3</sub> SnS<sub>4</sub> thin films prepared by sulfurizing stacked metal precursors, Journal of Physics D, 43, (2010)
[6]  
Hegedus S.S., Shafarman W.N., Thin-film solar cells: device measurements and analysis, Progress in Photovoltaics: Research and Applications, 12, pp. 155-176, (2004)
[7]  
Ito K., Nakazawa T., Electrical and optical properties of stannite-type quaternary semiconductor thin films, Japanese Journal of Applied Physics, 27, pp. 2094-2097, (1988)
[8]  
Jimbo K., Kimura R., Kamimura T., Yamada S., Maw W.S., Araki H., Oishi K., Katagiri H., Cu<sub>2</sub>ZnSnS<sub>4</sub>-type thin film solar cells using abundant materials, Thin Solid Films, 515, pp. 5997-5999, (2007)
[9]  
Kamoun N., Bouzouita H., Rezig B., Fabrication and characterization of Cu<sub>2</sub>ZnSnS<sub>4</sub> thin films deposited by spray pyrolysis technique, Thin Solid Films, 515, pp. 5949-5952, (2007)
[10]  
Katagiri H., Jimbo K., Maw W.S., Oishi K., Yamazaki M., Araki H., Takeuchi A., Development of CZTS-based thin film solar cells, Thin Solid Films, 517, pp. 2455-2460, (2009)