On weak solutions for p-Laplacian equations with weights

被引:0
作者
Pucci, Patrizia [1 ]
Servadei, Raffaella [2 ]
机构
[1] Dipartimento di Matematica e Informatica, Università degli Studi di Perugia, 06123 Perugia
[2] Dipartimento di Matematica, Università della Calabria Ponte, 87036 Arcavacata Di Rende, Cosenza, Pietro Bucci
来源
Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei Matematica e Applicazioni | 2007年 / 18卷 / 03期
关键词
P-Laplacian operator; Quasilinear equations; Weak solutions;
D O I
10.4171/RLM/493
中图分类号
学科分类号
摘要
We summarize the results obtained in the forthcoming papers [32, 33], in which we prove theorems on existence and non-existence of weak solutions of quasilinear singular elliptic equations with weights. We also establish regularity and qualitative properties of the solutions.
引用
收藏
页码:257 / 267
页数:10
相关论文
共 41 条
[1]  
Abdellaoui B., Felli V., Peral I., Existence and nonexistence results for quasilinear elliptic equations involving the p-laplacian, Bollettino della Unione Matematica Italiana B, 9, 2, pp. 445-484, (2006)
[2]  
Adimurthi, Chaudhuri N., Ramaswamy M., An improved hardy-sobolev inequality and its application, Proc. Amer. Math. Soc., 130, pp. 489-505, (2002)
[3]  
Ambrosetti A., Rabinowitz P., Dual variational methods in critical point theory and applications, J. Funct. Anal., 14, pp. 349-381, (1973)
[4]  
Berestycki H., Lions P.-L., Nonlinear scalar field equations, I. Existence of a ground state, Archive for Rational Mechanics and Analysis, 82, 4, pp. 313-345, (1983)
[5]  
Berestycki H., Lions P.-L., Nonlinear scalar field equations, II. Existence of infinitely many solutions, Archive for Rational Mechanics and Analysis, 82, 4, pp. 347-375, (1983)
[6]  
Caldiroli P., Malchiodi A., Singular elliptic problems with critical growth, Comm. Partial Differential Equations, 27, pp. 847-876, (2002)
[7]  
Calzolari E., Filippucci R., Pucci P., Existence of radial solutions for the p-Laplacian elliptic equations with weights, Discrete and Continuous Dynamical Systems, 15, 2, pp. 447-479, (2006)
[8]  
Chaudhuri N., Ramaswamy M., Existence of positive solutions of some semilinear elliptic equations with singular coefficients, Royal Society of Edinburgh - Proceedings A, 131, 4, pp. 1275-1295, (2001)
[9]  
Citti G., Positive solutions for a quasilinear elliptic equation in R<sup>n</sup>, Rend. Circ. Mat. Palermo, 35, pp. 364-375, (1986)
[10]  
Clement P., Manasevich R., Mitidieri E., Some existence and non-existence results for a homogeneous quasilinear problem, Asymptotic Analysis, 17, 1, pp. 13-29, (1998)