Perspectives of Hydrogen Generation in Cavitation-Jet Hydrodynamic Reactor

被引:0
作者
Mamytbekov, G. K. [1 ]
Danko, I. V. [1 ,2 ]
Beksultanov, Zh. I. [1 ]
Nurtazin, Y. R. [1 ]
Rakhimbayev, A. [3 ]
机构
[1] Inst Nucl Phys, Alma Ata 050032, Kazakhstan
[2] Satbayev Univ, Dept Power Engn, Alma Ata 050013, Kazakhstan
[3] Natl Sch Phys & Math, Astana 050000, Kazakhstan
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 20期
关键词
cavitation; cavitation-jet reactor; Venturi tube; Laval nozzle; hydrogen generation; plasma formation; cavitation-jet chamber; CEMENTITE FORMATION; PLASMA; SONOCHEMISTRY; LUMINESCENCE; ULTRASOUND; ALUMINUM;
D O I
10.3390/app14209415
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The article investigates the potential for producing hydrogen by combining the methods of water splitting under cavitation and the chemical activation of aluminum in a high-speed cavitation-jet flow generated by a specialized hydrodynamic reactor. The process of cavitation and water spraying causes the liquid heating itself until it reaches saturated vapor pressure, resulting in the creation of vapor-gaseous products from the splitting of water molecules. The producing of vapor-gaseous products can be explained through the theory of non-equilibrium low-temperature plasma formation within a high-speed cavitation-jet flow of fluid. Special focus is also given to the interactions occurring at the interface boundary phase of aluminum and liquid under cavitation condition. The primary solid products formed on aluminum surfaces are bayerite, copper oxides (I and II), iron carbide, and a compound of magnesium oxides and aluminum hydroxide. A high hydrogen yield of 60% was achieved when using a 0.1% sodium hydroxide solution as a working liquid compared to demineralized water. Moreover, hydrogen methane was also detected in the volume of the vapor-gas mixture, which could be utilized to address the challenges of decarbonization and the recycling of aluminum-containing solid industrial and domestic waste. This work provides a contribution to the study of the mechanism of hydrogen generation by cavitation-jet processing of water and aqueous alkali solutions, in which conditions are created for double cavitation in the cavitation-jet chamber of the hydrodynamic reactor.
引用
收藏
页数:20
相关论文
共 60 条
[1]   Hydrogen from waste metals: Recent progress, production techniques, purification, challenges, and applications [J].
Abdelkareem, Mohammad Ali ;
Ayoub, Mohamad ;
Al Najada, Rami Issa ;
Alami, Abdul Hai ;
Olabi, A. G. .
SUSTAINABLE HORIZONS, 2024, 9
[2]   Hydrogen as an energy vector [J].
Abdin, Zainul ;
Zafaranloo, Ali ;
Rafiee, Ahmad ;
Merida, Walter ;
Lipinski, Wojciech ;
Khalilpour, Kaveh R. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2020, 120
[3]  
Abuzreda A, 2023, Adv. Environ. Waste Manag. Recycl, V6, P384
[4]  
Abuzreda A., 2022, Adv. Environ. Waste Manag. Recycl, V5, P350
[5]   Sonochemistry: Environmental science and engineering applications [J].
Adewuyi, YG .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2001, 40 (22) :4681-4715
[6]   Lower-Carbon Hydrogen Production from Wastewater: A Comprehensive Review [J].
Alqahtani, Hassan S. .
SUSTAINABILITY, 2024, 16 (19)
[7]  
Arutyunov V.S., 2020, Neft.-Him, V1, P17
[8]  
[Багров В.В. Bagrov V.V.], 2013, [Безопасность в техносфере, Safety in Technosphere, Bezopasnost' v tekhnosfere], V2, P21
[9]  
Brecevic L, 2007, CROAT CHEM ACTA, V80, P467
[10]   Plasma-liquid interactions: a review and roadmap [J].
Bruggeman, P. J. ;
Kushner, M. J. ;
Locke, B. R. ;
Gardeniers, J. G. E. ;
Graham, W. G. ;
Graves, D. B. ;
Hofman-Caris, R. C. H. M. ;
Maric, D. ;
Reid, J. P. ;
Ceriani, E. ;
Rivas, D. Fernandez ;
Foster, J. E. ;
Garrick, S. C. ;
Gorbanev, Y. ;
Hamaguchi, S. ;
Iza, F. ;
Jablonowski, H. ;
Klimova, E. ;
Kolb, J. ;
Krcma, F. ;
Lukes, P. ;
Machala, Z. ;
Marinov, I. ;
Mariotti, D. ;
Thagard, S. Mededovic ;
Minakata, D. ;
Neyts, E. C. ;
Pawlat, J. ;
Petrovic, Z. Lj ;
Pflieger, R. ;
Reuter, S. ;
Schram, D. C. ;
Schroter, S. ;
Shiraiwa, M. ;
Tarabova, B. ;
Tsai, P. A. ;
Verlet, J. R. R. ;
von Woedtke, T. ;
Wilson, K. R. ;
Yasui, K. ;
Zvereva, G. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2016, 25 (05)