Solid-Phase Isothermal DNA Amplification and Detection on Quartz Crystal Microbalance Using Liposomes and Dissipation Monitoring

被引:1
作者
Grammoustianou A. [1 ,2 ]
Papadakis G. [1 ]
Gizeli E. [1 ,2 ]
机构
[1] Institute of Molecular Biology and Biotechnology-FORTH, Heraklion
[2] Department of Biology, University of Crete, Vassilika Vouton, Heraklion
基金
欧盟地平线“2020”;
关键词
dissipation monitoring; liposomes; Physical sensors; QCM-D; recombinase polymerase amplification; solid-phase isothermal DNA amplification;
D O I
10.1109/LSENS.2017.2739803
中图分类号
学科分类号
摘要
In our sensing configuration, the quartz crystal microbalance device is employed for the first time for the solid phase amplification via the recombinase polymerase amplification method and simultaneous detection of DNA amplicons on the device surface. For amplicon detection, a novel methodology is described, where the formation of surface-bound DNA amplicons is detected by using liposomes as an amplification probe and by selectively monitoring the dissipation change during liposome binding. The presented methodology possesses several advantages over existing methods, i.e., it is fast, achieving the detection of DNA produced after only 5 min of amplification, and simple, since it does not require any post-Amplification DNA extraction step. © 2017 IEEE.
引用
收藏
相关论文
共 24 条
[1]  
Zanoli L.M., Spoto G., Isothermal amplification methods for the detection of nucleic acids in microfluidic devices, Biosensors, 3, 1, pp. 18-43, (2012)
[2]  
Asiello P.J., Baeumner A.J., Miniaturized isothermal nucleic acid amplification, a review, Lab. Chip, 11, 8, pp. 1420-1430, (2011)
[3]  
Moyboroda O., Et al., Isothermal solid-phase amplification system for detection of Yersinia pestis, Anal. Bioanal. Chem, 408, 3, pp. 671-676, (2016)
[4]  
Del Rio J.S., Et al., Real-Time and label-free ring resonator monitoring of solid-phase recombinase polymerase amplification, Biosens. Bioelectron, 73, pp. 130-137, (2015)
[5]  
Santiago-Felipe S., Tortajada-Genaro L.A., Morais S., Puchades R., Maquieira A., Isothermal DNA amplification strategies for duplex microorganism detection, Food Chem, 174, pp. 509-515, (2015)
[6]  
Santiago-Felipe S., Tortajada-Genaro L.A., Morais S., Puchades R., Maquieira A., One-pot isothermal DNA amplification-hybridisation and detection by a disc-based method, Sens. Actuators B, Chem, 204, pp. 273-281, (2014)
[7]  
Kersting S., Rausch V., Bier F.B., Von Nickisch-Rosenegk M., Multiplex isothermal solid-phase recombinase polymerase amplification for the specific and fast DNA-based detection of three bacterial pathogens, Microchim Acta, 181, 13-14, pp. 1715-1723, (2014)
[8]  
Kim T.-H., Park J., Kim C.-J., Cho Y.-K., Fully integrated lab-on-A-disc for nucleic acid analysis of foodborne pathogens, Anal. Chem, 86, 8, pp. 3841-3848, (2014)
[9]  
Kunze A., Dilcher M., El Wahed A.A., Hufert F., Niessner R., Seidel M., On-chip isothermal nucleic acid amplification on flow-based chemiluminescence microarray analysis platform for the detection of viruses and bacteria, Anal. Chem, 88, 1, pp. 898-905, (2015)
[10]  
Del Rio J.S., Adly N.Y., Acero-Sanchez J.L., Henry O.Y.F., OSullivan C.K., Electrochemical detection of francisella tularensis genomic DNA using solid-phase recombinase polymerase amplification, Biosens. Bioelectron, 54, pp. 674-678, (2014)