Se(IV) diffusion behavior in illite-montmorillonite mixture

被引:0
|
作者
Xiong H.-F. [1 ]
Wang Z.-F. [1 ,2 ]
Bao S.-S. [1 ]
Zhou Y.-J. [1 ]
Li J.-Y. [3 ]
Wu T. [1 ]
机构
[1] School of Engineering, Huzhou University, Huzhou
[2] China Institute of Atomic Energy, Beijing
[3] China Resources Wind Power Development Co., Ltd., Beijing
来源
Yuanzineng Kexue Jishu/Atomic Energy Science and Technology | 2017年 / 51卷 / 01期
关键词
Diffusion behavior; Illite; Montmorillonite; Se(IV);
D O I
10.7538/yzk.2017.51.01.0013
中图分类号
学科分类号
摘要
The diffusion behavior of Se(IV) (surrogate to 79Se (IV)) in illite-montmorillonite mixture was investigated by through-diffusion method. The results show that the migration of Se(IV) is altered significantly by the illitization of montmorillonite. The effective diffusion coefficient of Se(IV) increases from 3.89×10-11 m2/s to 18.1×10-11 m2/s. When the illite-montmorillonite ratio is in the range of 1∶9 and 5∶5, De values have no obvious change. Whereas, De values increase significantly at illite-montmorillonite ratio of 6∶4, indicating that the predominant composition of the mineral clay plays a leading role in Se(IV) diffusion. When the illite-montmorillonite ratio increases from 1∶9 to 6∶4, the rock capacity and distribution coefficient of Se(IV) decrease from 4.07 to 0.75 and from 22.7×10-4 m3/kg to 1.95×10-4 m3/kg, respectively. Both of them decrease with the increase of illite content. It demonstrates that the hindrance of illite-montmorillonite mixture turns worse due to the weaker sorption of Se(IV) on illite, leading the increase of Se(IV) migration in illite-montmorillonite mixture. © 2017, Editorial Board of Atomic Energy Science and Technology. All right reserved.
引用
收藏
页码:13 / 18
页数:5
相关论文
共 19 条
  • [1] Ye W.M., Chen Y.G., Chen B., Et al., Advances on the knowledge of the buffer/backfill properties of heavily-compacted GMZ bentonite, Engineering Geology, 116, pp. 12-20, (2010)
  • [2] Liu Y., Chen Z., Inner Mongolia Gaomiaozi bentonite as backfill material the feasibility of HLW repository, Journal of Minerals, 21, 3, pp. 541-543, (2001)
  • [3] Marty N.C.M., Fritz B., Clement A., Et al., Modelling the long term alteration of the engineered bentonite barrier in an underground radioactive waste repository, Applied Clay Science, 47, pp. 82-90, (2010)
  • [4] Ngo V.V., Delalande M., Clement A., Et al., Coupled transport-reaction modeling of the long-term interaction between iron, bentonite and Callovo-oxfordianclaystone in radioactive waste confinement systems, Applied Clay Science, 101, pp. 430-443, (2014)
  • [5] Pusch R., Kasbohm J., Thao H.T.M., Chemical stability of montmorillonite buffer clay under repository-like conditions: A synthesis of relevant experimental data, Applied Clay Science, 47, pp. 113-119, (2010)
  • [6] Glaus M.A., Frick S., Rosse R., Et al., Comparative study of tracer diffusion of HTO, <sup>22</sup>Na<sup>+</sup> and <sup>36</sup>Cl<sup>-</sup> in compacted kaolinite, illite and montmorillonite, Geochimica Et Cosmochimica Acta, 74, pp. 1999-2010, (2010)
  • [7] Missana T., Alonso U., Garcia-Gutierrez M., Experimental study and modelling of selenitesorption onto illite and smectite clays, Journal of Colloid and Interface Science, 334, pp. 132-138, (2009)
  • [8] Tachi Y., Shibutani T., Sato H., Et al., Sorption and diffusion behavior of selenium in tuff, Journal of Contaminant Hydrology, 35, pp. 77-89, (1998)
  • [9] Descostes M., Blin V., Bazer-Bachi F., Et al., Diffusion of anionic species in Callovo-oxfordian argillites and Oxfordianlimestones (Meuse/Haute-Marne, France), Applied Geochemistry, 23, pp. 655-677, (2008)
  • [10] Charlet L., Scheinost A.C., Tournassat C., Et al., Electron transfer at the mineral/water interface: Selenium reduction by ferrous iron sorbed on clay, Geochimica Et Cosmochimica Acta, 71, pp. 5731-5749, (2007)