Metal-organic framework derived porous nanosheets-like Co3O4 electrodes on stainless steel with high-performance for supercapacitors

被引:0
|
作者
Bhoite, A. A. [1 ]
Sawant, V. A. [2 ]
Tarwal, N. L. [1 ]
机构
[1] Shivaji Univ, Dept Phys, Smart Mat Res Lab, Kolhapur, Maharashtra, India
[2] Shivaji Univ, Dept Technol, Kolhapur, Maharashtra, India
关键词
Metal-organic framework; Cobalt oxide; Nanosheets; Electrochemical properties; Supercapacitor; SOLID-STATE THERMOLYSIS; HYBRID; CARBON; GRAPHENE; BATTERY;
D O I
10.1016/j.electacta.2024.145126
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In this work, three-dimensional (3D) nanoporous MOF-derived Co3O4 was successfully prepared by a facile, easy, and rapid solvothermal method on a stainless steel substrate using 1, 4-BDC organic linker and a precursor. Additionally, the effects of the Co-precursor and organic linker on the structure, composition, and morphology of the prepared MOF-derived Co3O4 samples were investigated through an XRD study, which indicated that the MOF-derived Co3O4 thin films exhibited crystalline nature upon deposition on the stainless steel substrate. FESEM revealed a porous nanosheet-like morphology. EDAX analysis confirmed the formation of the MOFderived Co3O4 structure, indicating the presence of cobalt, oxygen, and carbon elements. The oxidation states of the prepared MOF-derived Co3O4 thin films were determined by X-ray photoelectron spectroscopy. Furthermore, the electrochemical performance of the MOF-derived Co3O4 samples was evaluated in a three-electrode system using 1 M KOH electrolyte. Consequently, optimized MOF-derived Co3O4 exhibited excellent electrochemical performance attributed to these advantages. The C3 sample demonstrated an outstanding specific capacitance of 1210 F/g at a current density of 0.5 mA/cm2, along with remarkable cyclic stability retention of 94.30 % after 4000 charging/discharging cycles. Additionally, the MOF-derived Co3O4 (C3) electrode showed an excellent energy density of 35.70 Wh/kg and a power density of 4.5 kW/kg. As a result, the unique hierarchical porous structure of MOF-derived Co3O4 also offers effective pathways and excellent electrochemical performance, making it a promising candidate for advanced electrode materials in high-performance supercapacitors.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Metal-organic framework-derived Mn3O4 nanostructure on reduced graphene oxide as high-performance supercapacitor electrodes
    Li, Wen
    Xu, Aizhen
    Zhang, Yu
    Yu, Yan
    Liu, Zhihua
    Qin, Yujun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 897
  • [42] Porous hybrid carbon nanofibers derived from metal-organic frameworks for high-performance supercapacitors
    Li, Yaqiong
    Wei, Zihao
    Chen, Xianqi
    Li, Shenghua
    Pang, Siping
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 925
  • [43] Surface engineering of MOFs-derived Co3O4 nanosheets for high-performance supercapacitor
    Yin, Xuemin
    Liu, Huimin
    Li, Kezhi
    Lu, Jinhua
    MATERIALS TECHNOLOGY, 2022, 37 (14) : 2976 - 2982
  • [44] Electrospun Carbon Nanofibers with in Situ Encapsulated Co3O4 Nanoparticles as Electrodes for High-Performance Supercapacitors
    Abouali, Sara
    Garakani, Mohammad Akbari
    Zhang, Biao
    Xu, Zheng-Long
    Heidari, Elham Kamali
    Huang, Jian-qiu
    Huang, Jiaqiang
    Kim, Jang-Kyo
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (24) : 13503 - 13511
  • [45] Metal-organic framework-derived ZnCo2O4@CoMoO4 positive electrode for high-performance asymmetric supercapacitors
    Jothilakshmi, T.
    Deepika, S.
    Sivakumar, N.
    Meghanathan, K. L.
    MATERIALS CHEMISTRY AND PHYSICS, 2025, 334
  • [46] Facile fabrication of porous Co3O4 nanowires for high performance supercapacitors
    Xu, Yanan
    Ding, Qiao
    Li, Li
    Xie, Zhengjun
    Jiang, Gaoxue
    NEW JOURNAL OF CHEMISTRY, 2018, 42 (24) : 20069 - 20073
  • [47] Metal-Organic Framework-Derived CoOx/Carbon Composite Array for High-Performance Supercapacitors
    Li, Yang
    Xie, Huaqing
    Li, Jing
    Yamauchi, Yusuke
    Henzie, Joel
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (35) : 41649 - 41656
  • [48] Ultramicroporous carbon nanoparticles derived from metal-organic framework nanoparticles for high-performance supercapacitors
    Liu, Mingxian
    Zhao, Fangle
    Zhu, Dazhang
    Duan, Hui
    Lv, Yaokang
    Li, Liangchun
    Gan, Lihua
    MATERIALS CHEMISTRY AND PHYSICS, 2018, 211 : 234 - 241
  • [49] Electrodeposition of Mesoporous Co3O4 Nanosheets on Carbon Foam for High Performance Supercapacitors
    Xu, Zhemi
    Younis, Adnan
    Chu, Dewei
    Ao, Zhimin
    Xu, Haolan
    Li, Sean
    JOURNAL OF NANOMATERIALS, 2014, 2014
  • [50] Stringing metal-organic framework-derived hollow Co3S4 nanopolyhedra on V2O5 nanowires for high-performance supercapacitors
    Xue, Zhigao
    Tao, Kai
    Han, Lei
    APPLIED SURFACE SCIENCE, 2022, 600