Metal-organic framework derived porous nanosheets-like Co3O4 electrodes on stainless steel with high-performance for supercapacitors

被引:0
|
作者
Bhoite, A. A. [1 ]
Sawant, V. A. [2 ]
Tarwal, N. L. [1 ]
机构
[1] Shivaji Univ, Dept Phys, Smart Mat Res Lab, Kolhapur, Maharashtra, India
[2] Shivaji Univ, Dept Technol, Kolhapur, Maharashtra, India
关键词
Metal-organic framework; Cobalt oxide; Nanosheets; Electrochemical properties; Supercapacitor; SOLID-STATE THERMOLYSIS; HYBRID; CARBON; GRAPHENE; BATTERY;
D O I
10.1016/j.electacta.2024.145126
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In this work, three-dimensional (3D) nanoporous MOF-derived Co3O4 was successfully prepared by a facile, easy, and rapid solvothermal method on a stainless steel substrate using 1, 4-BDC organic linker and a precursor. Additionally, the effects of the Co-precursor and organic linker on the structure, composition, and morphology of the prepared MOF-derived Co3O4 samples were investigated through an XRD study, which indicated that the MOF-derived Co3O4 thin films exhibited crystalline nature upon deposition on the stainless steel substrate. FESEM revealed a porous nanosheet-like morphology. EDAX analysis confirmed the formation of the MOFderived Co3O4 structure, indicating the presence of cobalt, oxygen, and carbon elements. The oxidation states of the prepared MOF-derived Co3O4 thin films were determined by X-ray photoelectron spectroscopy. Furthermore, the electrochemical performance of the MOF-derived Co3O4 samples was evaluated in a three-electrode system using 1 M KOH electrolyte. Consequently, optimized MOF-derived Co3O4 exhibited excellent electrochemical performance attributed to these advantages. The C3 sample demonstrated an outstanding specific capacitance of 1210 F/g at a current density of 0.5 mA/cm2, along with remarkable cyclic stability retention of 94.30 % after 4000 charging/discharging cycles. Additionally, the MOF-derived Co3O4 (C3) electrode showed an excellent energy density of 35.70 Wh/kg and a power density of 4.5 kW/kg. As a result, the unique hierarchical porous structure of MOF-derived Co3O4 also offers effective pathways and excellent electrochemical performance, making it a promising candidate for advanced electrode materials in high-performance supercapacitors.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Green Fabrication of Ultrathin Co3O4 Nanosheets from Metal-Organic Framework for Robust High-Rate Supercapacitors
    Xiao, Zhenyu
    Fan, Lili
    Xu, Ben
    Zhang, Shanqing
    Kang, Wenpei
    Kang, Zixi
    Lin, Huan
    Liu, Xiuping
    Zhang, Shiyu
    Sun, Daofeng
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (48) : 41827 - 41836
  • [2] Metal-organic framework-derived Co3O4 covered by MoS2 nanosheets for high-performance lithium-ion batteries
    Wang, Jinpei
    Zhou, Hu
    Zhu, Meizhou
    Yuan, Aihua
    Shen, Xiaoping
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 744 : 220 - 227
  • [3] Porous nanotubes derived from a metal-organic framework as high-performance supercapacitor electrodes
    Li, Hui
    Yue, Fan
    Yang, Chao
    Qiu, Peng
    Xue, Peng
    Xu, Qian
    Wang, Jide
    CERAMICS INTERNATIONAL, 2016, 42 (02) : 3121 - 3129
  • [4] Co3O4/RGO/Co3O4 pseudocomposite grown in situ on a Co foil for high-performance supercapacitors
    Wang, Shengqi
    Ju, Peiwen
    Zhu, Zhaoqiang
    Zhao, Chongjun
    RSC ADVANCES, 2016, 6 (102): : 99640 - 99647
  • [5] Hierarchically porous Co3O4/C nanowire arrays derived from a metal-organic framework for high performance supercapacitors and the oxygen evolution reaction
    Zhang, Chao
    Xiao, Jian
    Lv, Xianglong
    Qian, Lihua
    Yuan, Songliu
    Wang, Shuai
    Lei, Pengxiang
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (42) : 16516 - 16523
  • [6] 2D Metal-Organic Framework Derived Co3O4 for the Oxygen Evolution Reaction and High-Performance Lithium-Ion Batteries
    Zheng, Hao-Yan
    Xie, Dan
    Li, He
    Wu, Shuang-Yu
    Qin, Bo-Wen
    Cui, Zheng
    Zhang, Xiao-Ying
    Zhang, Jing-Ping
    CHEMNANOMAT, 2020, 6 (12): : 1770 - 1775
  • [7] High electrochemical performance of metal azolate framework-derived ZnO/Co3O4 for supercapacitors
    Zhu, Hao
    Liu, Jie
    Zhang, Qianli
    Wei, Jie
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2020, 44 (11) : 8654 - 8665
  • [8] Ultrathin Metal-Organic Framework Nanosheet-Derived Ultrathin Co3O4 Nanomeshes with Robust Oxygen-Evolving Performance and Asymmetric Supercapacitors
    Wei, Guijuan
    Zhou, Zhen
    Zhao, Xixia
    Zhang, Weiqing
    An, Changhua
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (28) : 23721 - 23730
  • [9] Hierarchically Porous Carbons Derived from Metal-Organic Framework/Chitosan Composites for High-Performance Supercapacitors
    Zhong, Shan
    Kitta, Mitsunori
    Xu, Qiang
    CHEMISTRY-AN ASIAN JOURNAL, 2019, 14 (20) : 3583 - 3589
  • [10] Porous Co3O4 microflowers prepared by thermolysis of metal-organic framework for supercapacitor
    Li, Guo-Chang
    Hua, Xiu-Ni
    Liu, Peng-Fei
    Xie, Yi-Xin
    Han, Lei
    MATERIALS CHEMISTRY AND PHYSICS, 2015, 168 : 127 - 131