共 69 条
[11]
Hyeoncheol C., Choi I.S., Three-dimensionally embedded graph convolutional network (3DGCN) for molecule interpretation, (2018)
[12]
You J., Liu B., Ying R., Pande V., Leskovec J., Graph convolutional policy network for goal-directed molecular graph generation, Proc. Adv. Neural Inf. Process. Syst., pp. 6410-6421, (2018)
[13]
Zheng C., Fan X., Wang C., Qi J., GMAN: A graph multiattention network for traffic prediction, Proc. 34th AAAI Conf. Artif. Intell. (AAAI), pp. 1234-1241, (2020)
[14]
Yu B., Yin H., Zhu Z., Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting, Proc. Int. Joint Conf. Artif. Intell. (IJCAI), pp. 3634-3640, (2018)
[15]
Xiaoyang W., Et al., Traffic flow prediction via spatial temporal graph neural network, Proc. World Wide Web Conf. (WWW), pp. 1082-1092, (2020)
[16]
Ying R., Morris C., Hamilton W.L., You J., Ren X., Leskovec J., Hierarchical graph representation learning with differentiable pooling, pp. 4800-4810, (2018)
[17]
Liu N., Jian S., Li D., Xu H., Unsupervised hierarchical graph pooling via substructure-sensitive mutual information maximization, pp. 1299-1308, (2022)
[18]
Gao H., Ji S., Graph U-Nets, Proc. 36th Int. Conf. Mach. Learn. (ICML), pp. 3651-3660, (2019)
[19]
Liang Z., Et al., Structure-feature based graph self-adaptive pooling, Proc. World Wide Web Conf. (WWW), pp. 3098-3104, (2020)
[20]
Lee J., Lee I., Kang J., Self-attention graph pooling, Proc. 36th Int. Conf. Mach. Learn. (ICML), pp. 6661-6670, (2019)