Audio Explainable Artificial Intelligence: A Review

被引:7
作者
Akman, Alican [1 ]
Schuller, Bjorn W. [1 ]
机构
[1] Imperial Coll London, Dept Comp, London, England
来源
INTELLIGENT COMPUTING | 2024年 / 2卷
关键词
D O I
10.34133/icomputing.0074
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Artificial intelligence (AI) capabilities have grown rapidly with the introduction of cutting-edge deep-model architectures and learning strategies. Explainable AI (XAI) methods aim to make the capabilities of AI models beyond accuracy interpretable by providing explanations. The explanations are mainly used to increase model transparency, debug the model, and justify the model predictions to the end user. Most current XAI methods focus on providing visual and textual explanations that are prone to being present in visual media. However, audio explanations are crucial because of their intuitiveness in audio-based tasks and higher expressiveness than other modalities in specific scenarios, such as when understanding visual explanations requires expertise. In this review, we provide an overview of XAI methods for audio in 2 categories: exploiting generic XAI methods to explain audio models, and XAI methods specialised for the interpretability of audio models. Additionally, we discuss certain open problems and highlight future directions for the development of XAI techniques for audio modeling.
引用
收藏
页数:9
相关论文
共 56 条
[1]   Explainability for artificial intelligence in healthcare: a multidisciplinary perspective [J].
Amann, Julia ;
Blasimme, Alessandro ;
Vayena, Effy ;
Frey, Dietmar ;
Madai, Vince I. .
BMC MEDICAL INFORMATICS AND DECISION MAKING, 2020, 20 (01)
[2]  
Amiriparian S, 2018, IEEE IJCNN
[3]  
Ardila R, 2020, Arxiv, DOI [arXiv:1912.06670, 10.48550/arXiv.1912.06670, DOI 10.48550/ARXIV.1912.06670]
[4]  
Atakishiyev S, 2024, Arxiv, DOI [arXiv:2112.11561, DOI 10.48550/ARXIV.2112.11561]
[5]  
Brown TB, 2020, Arxiv, DOI [arXiv:2005.14165, DOI 10.48550/ARXIV.2005.14165]
[6]   On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation [J].
Bach, Sebastian ;
Binder, Alexander ;
Montavon, Gregoire ;
Klauschen, Frederick ;
Mueller, Klaus-Robert ;
Samek, Wojciech .
PLOS ONE, 2015, 10 (07)
[7]  
Baevski A, 2020, Arxiv, DOI arXiv:1910.05453
[8]  
Baevski A, 2020, Arxiv, DOI [arXiv:2006.11477, DOI 10.48550/ARXIV.2006.11477, 10.48550/arXiv.2006.11477]
[9]   Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI [J].
Barredo Arrieta, Alejandro ;
Diaz-Rodriguez, Natalia ;
Del Ser, Javier ;
Bennetot, Adrien ;
Tabik, Siham ;
Barbado, Alberto ;
Garcia, Salvador ;
Gil-Lopez, Sergio ;
Molina, Daniel ;
Benjamins, Richard ;
Chatila, Raja ;
Herrera, Francisco .
INFORMATION FUSION, 2020, 58 :82-115
[10]  
Bau David, 2017, arXiv