An Efficient and Secure Privacy-Preserving Federated Learning Framework Based on Multiplicative Double Privacy Masking

被引:0
|
作者
Shen, Cong [1 ]
Zhang, Wei [1 ,2 ]
Zhou, Tanping [1 ,2 ]
Zhang, Yiming [1 ]
Zhang, Lingling [3 ]
机构
[1] Engn Univ PAP, Coll Cryptog Engn, Xian 710086, Peoples R China
[2] Key Lab Peoples Armed Police Cryptol & Informat Se, Xian 710086, Peoples R China
[3] Engn Univ PAP, Coll Informat Engn, Xian 710086, Peoples R China
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2024年 / 80卷 / 03期
基金
中国国家自然科学基金;
关键词
Federated learning; privacy protection; homomorphic encryption; double mask; secret sharing; gradient selection;
D O I
10.32604/cmc.2024.054434
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the increasing awareness of privacy protection and the improvement of relevant laws, federal learning has gradually become a new choice for cross-agency and cross-device machine learning. In order to solve the problems of privacy leakage, high computational overhead and high traffic in some federated learning schemes, this paper proposes a multiplicative double privacy mask algorithm which is convenient for homomorphic addition aggregation. The combination of homomorphic encryption and secret sharing ensures that the server cannot compromise user privacy from the private gradient uploaded by the participants. At the same time, the proposed TQRR (Top-Q-Random-R) gradient selection algorithm is used to filter the gradient of encryption and upload efficiently, which reduces the computing overhead of 51.78% and the traffic of 64.87% on the premise of ensuring the accuracy of the model, which makes the framework of privacy protection federated learning lighter to adapt to more miniaturized federated learning terminals.
引用
收藏
页码:4729 / 4748
页数:20
相关论文
共 50 条
  • [21] Efficient Privacy-Preserving Federated Learning With Unreliable Users
    Li, Yiran
    Li, Hongwei
    Xu, Guowen
    Huang, Xiaoming
    Lu, Rongxing
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (13) : 11590 - 11603
  • [22] Efficient and privacy-preserving group signature for federated learning
    Kanchan, Sneha
    Jang, Jae Won
    Yoon, Jun Yong
    Choi, Bong Jun
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2023, 147 : 93 - 106
  • [23] Secure, privacy-preserving and federated machine learning in medical imaging
    Kaissis, Georgios A.
    Makowski, Marcus R.
    Ruckert, Daniel
    Braren, Rickmer F.
    NATURE MACHINE INTELLIGENCE, 2020, 2 (06) : 305 - 311
  • [24] Efficient and Privacy-Preserving Federated Learning with Irregular Users
    Xu, Jieyu
    Li, Hongwei
    Zeng, Jia
    Hao, Meng
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 534 - 539
  • [25] An efficient privacy-preserving and verifiable scheme for federated learning
    Yang, Xue
    Ma, Minjie
    Tang, Xiaohu
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 160 : 238 - 250
  • [26] TAPFed: Threshold Secure Aggregation for Privacy-Preserving Federated Learning
    Xu, Runhua
    Li, Bo
    Li, Chao
    Joshi, James B. D.
    Ma, Shuai
    Li, Jianxin
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2024, 21 (05) : 4309 - 4323
  • [27] A efficient and robust privacy-preserving framework for cross-device federated learning
    Du, Weidong
    Li, Min
    Wu, Liqiang
    Han, Yiliang
    Zhou, Tanping
    Yang, Xiaoyuan
    COMPLEX & INTELLIGENT SYSTEMS, 2023, 9 (05) : 4923 - 4937
  • [28] Privacy-Preserving Machine Learning Using Federated Learning and Secure Aggregation
    Lia, Dragos
    Togan, Mihai
    PROCEEDINGS OF THE 2020 12TH INTERNATIONAL CONFERENCE ON ELECTRONICS, COMPUTERS AND ARTIFICIAL INTELLIGENCE (ECAI-2020), 2020,
  • [29] Bppfl: a blockchain-based framework for privacy-preserving federated learning
    Asad, Muhammad
    Otoum, Safa
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2025, 28 (02):
  • [30] A efficient and robust privacy-preserving framework for cross-device federated learning
    Weidong Du
    Min Li
    Liqiang Wu
    Yiliang Han
    Tanping Zhou
    Xiaoyuan Yang
    Complex & Intelligent Systems, 2023, 9 : 4923 - 4937