An Efficient and Secure Privacy-Preserving Federated Learning Framework Based on Multiplicative Double Privacy Masking

被引:0
|
作者
Shen, Cong [1 ]
Zhang, Wei [1 ,2 ]
Zhou, Tanping [1 ,2 ]
Zhang, Yiming [1 ]
Zhang, Lingling [3 ]
机构
[1] Engn Univ PAP, Coll Cryptog Engn, Xian 710086, Peoples R China
[2] Key Lab Peoples Armed Police Cryptol & Informat Se, Xian 710086, Peoples R China
[3] Engn Univ PAP, Coll Informat Engn, Xian 710086, Peoples R China
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2024年 / 80卷 / 03期
基金
中国国家自然科学基金;
关键词
Federated learning; privacy protection; homomorphic encryption; double mask; secret sharing; gradient selection;
D O I
10.32604/cmc.2024.054434
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the increasing awareness of privacy protection and the improvement of relevant laws, federal learning has gradually become a new choice for cross-agency and cross-device machine learning. In order to solve the problems of privacy leakage, high computational overhead and high traffic in some federated learning schemes, this paper proposes a multiplicative double privacy mask algorithm which is convenient for homomorphic addition aggregation. The combination of homomorphic encryption and secret sharing ensures that the server cannot compromise user privacy from the private gradient uploaded by the participants. At the same time, the proposed TQRR (Top-Q-Random-R) gradient selection algorithm is used to filter the gradient of encryption and upload efficiently, which reduces the computing overhead of 51.78% and the traffic of 64.87% on the premise of ensuring the accuracy of the model, which makes the framework of privacy protection federated learning lighter to adapt to more miniaturized federated learning terminals.
引用
收藏
页码:4729 / 4748
页数:20
相关论文
共 50 条
  • [1] ESVFL: Efficient and secure verifiable federated learning with privacy-preserving
    Cai, Jiewang
    Shen, Wenting
    Qin, Jing
    INFORMATION FUSION, 2024, 109
  • [2] Masking and Homomorphic Encryption-Combined Secure Aggregation for Privacy-Preserving Federated Learning
    Park, Soyoung
    Lee, Junyoung
    Harada, Kaho
    Chi, Jeonghee
    ELECTRONICS, 2025, 14 (01):
  • [3] Fast Secure Aggregation for Privacy-Preserving Federated Learning
    Liu, Yanjun
    Qian, Xinyuan
    Li, Hongwei
    Hao, Meng
    Guo, Song
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 3017 - 3022
  • [4] A Privacy-Preserving Federated Learning Framework Based on Homomorphic Encryption
    Chen, Liangjiang
    Wang, Junkai
    Xiong, Ling
    Zeng, Shengke
    Geng, Jiazhou
    2023 IEEE INTERNATIONAL CONFERENCES ON INTERNET OF THINGS, ITHINGS IEEE GREEN COMPUTING AND COMMUNICATIONS, GREENCOM IEEE CYBER, PHYSICAL AND SOCIAL COMPUTING, CPSCOM IEEE SMART DATA, SMARTDATA AND IEEE CONGRESS ON CYBERMATICS,CYBERMATICS, 2024, : 512 - 517
  • [5] An Efficient Federated Learning Framework for Privacy-Preserving Data Aggregation in IoT
    Shi, Rongquan
    Wei, Lifei
    Zhang, Lei
    2023 20TH ANNUAL INTERNATIONAL CONFERENCE ON PRIVACY, SECURITY AND TRUST, PST, 2023, : 385 - 391
  • [6] FLCP: federated learning framework with communication-efficient and privacy-preserving
    Yang, Wei
    Yang, Yuan
    Xi, Yingjie
    Zhang, Hailong
    Xiang, Wei
    APPLIED INTELLIGENCE, 2024, 54 (9-10) : 6816 - 6835
  • [7] Secure Dataset Condensation for Privacy-Preserving and Efficient Vertical Federated Learning
    Gao, Dashan
    Wu, Canhui
    Zhang, Xiaojin
    Yao, Xin
    Yang, Qiang
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, PT I, ECML PKDD 2024, 2024, 14941 : 212 - 229
  • [8] SAEV: Secure Aggregation and Efficient Verification for Privacy-Preserving Federated Learning
    Wang, Junkai
    Wang, Rong
    Xiong, Ling
    Xiong, Neal
    Liu, Zhicai
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (24): : 39681 - 39696
  • [9] Efficient and Privacy-Preserving Federated Learning with Irregular Users
    Xu, Jieyu
    Li, Hongwei
    Zeng, Jia
    Hao, Meng
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 534 - 539
  • [10] PrivacyFL: A Simulator for Privacy-Preserving and Secure Federated Learning
    Mugunthan, Vaikkunth
    Peraire-Bueno, Anton
    Kagal, Lalana
    CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, : 3085 - 3092