Approximate weak efficiency of the set-valued optimization problem with variable ordering structures

被引:0
作者
Zhou, Zhiang [1 ]
Wei, Wenbin [2 ]
Huang, Fei [1 ]
Zhao, Kequan [2 ]
机构
[1] Chongqing Univ Technol, Coll Sci, Chongqing 400054, Peoples R China
[2] Chongqing Normal Univ, Sch Math Sci, Chongqing 401331, Peoples R China
基金
国家重点研发计划;
关键词
Set-valued maps; Variable ordering structures; Approximate weakly efficient solution; Scalarization; BENSON PROPER EFFICIENCY; VECTOR OPTIMIZATION; NONDOMINATED SOLUTIONS; SEPARATION THEOREMS; OPTIMAL ELEMENTS; SCALARIZATION; RESPECT; POINTS; DUALITY;
D O I
10.1007/s10878-024-01211-0
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In locally convex spaces, we introduce the new notion of approximate weakly efficient solution of the set-valued optimization problem with variable ordering structures (in short, SVOPVOS) and compare it with other kinds of solutions. Under the assumption of near D(<middle dot>)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {D}(\cdot )$$\end{document}-subconvexlikeness, we establish linear scalarization theorems of (SVOPVOS) in the sense of approximate weak efficiency. Finally, without any convexity, we obtain a nonlinear scalarization theorem of (SVOPVOS). We also present some examples to illustrate our results.
引用
收藏
页数:13
相关论文
共 32 条
[1]  
Aubin J.P., 1990, Set -Valued Analysis, DOI 10.1007/978-0-8176-4848-0
[2]   IMPROVED DEFINITION OF PROPER EFFICIENCY FOR VECTOR MAXIMIZATION WITH RESPECT TO CONES [J].
BENSON, HP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1979, 71 (01) :232-241
[3]   PROPER EFFICIENT POINTS FOR MAXIMIZATIONS WITH RESPECT TO CONES [J].
BORWEIN, J .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1977, 15 (01) :57-63
[4]   SUPER EFFICIENCY IN VECTOR OPTIMIZATION [J].
BORWEIN, JM ;
ZHUANG, D .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 338 (01) :105-122
[5]   Characterizations of variable domination structures via nonlinear scalarization [J].
Chen, GY ;
Yang, XQ .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2002, 112 (01) :97-110
[6]   EXISTENCE OF SOLUTIONS FOR A VECTOR VARIATIONAL INEQUALITY - AN EXTENSION OF THE HARTMANN-STAMPACCHIA THEOREM [J].
CHEN, GY .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1992, 74 (03) :445-456
[7]   Characterizations of the Benson proper efficiency for nonconvex vector optimization [J].
Chen, GY ;
Rong, WD .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1998, 98 (02) :365-384
[8]   Properly optimal elements in vector optimization with variable ordering structures [J].
Eichfelder, Gabriele ;
Kasimbeyli, Refail .
JOURNAL OF GLOBAL OPTIMIZATION, 2014, 60 (04) :689-712
[9]   Optimal Elements in Vector Optimization with a Variable Ordering Structure [J].
Eichfelder, Gabriele .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2011, 151 (02) :217-240
[10]   PROPER EFFICIENCY AND THEORY OF VECTOR MAXIMIZATION [J].
GEOFFRION, AM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1968, 22 (03) :618-+