Using convolutional neural networks for image semantic segmentation and object detection

被引:0
|
作者
Li, Shuangmei [1 ]
Huang, Chengning [1 ]
机构
[1] Nanjing Tech Univ Pujiang Inst, Sch Comp & Commun Engn, Nanjing 210000, Peoples R China
来源
SYSTEMS AND SOFT COMPUTING | 2024年 / 6卷
关键词
Convolutional neural network; Feature alignment; Spatial attention; Semantic segmentation; Object detection;
D O I
10.1016/j.sasc.2024.200172
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Convolutional neural networks are widely used for feature extraction in the fields of object detection and image segmentation. However, traditional CNN models often struggle to ensure accuracy in high noise environments. A study proposes an enhanced CNN model to improve its ability to recognize targets of different scales. This model combines multi-scale perceptual aggregation and feature alignment (MPAFA) mechanisms. This new method effectively combines low-level and high-level features, which helps to better identify objects of different sizes. The experimental results show that the proposed model achieved a segmentation accuracy of 99.6 % on the Cityscapes dataset, and maintained an accuracy of 97.3 % even with increased noise. Further experiments have shown that the model outperforms existing methods in terms of accuracy and recall. The experimental results show that the model exhibits excellent performance in object detection and segmentation tasks. This study provides a more effective strategy for processing complex images by optimizing network structure and enhancing feature fusion.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Convolutional Neural Networks-Based Object Detection Algorithm by Jointing Semantic Segmentation for Images
    Qiang, Baohua
    Chen, Ruidong
    Zhou, Mingliang
    Pang, Yuanchao
    Zhai, Yijie
    Yang, Minghao
    SENSORS, 2020, 20 (18) : 1 - 14
  • [2] Artificial Convolutional Neural Network in Object Detection and Semantic Segmentation for Medical Imaging Analysis
    Yang, Ruixin
    Yu, Yingyan
    FRONTIERS IN ONCOLOGY, 2021, 11
  • [3] RETRACTED ARTICLE: Image object detection and semantic segmentation based on convolutional neural network
    Laigang Zhang
    Zhou Sheng
    Yibin Li
    Qun Sun
    Ying Zhao
    Deying Feng
    Neural Computing and Applications, 2020, 32 : 1949 - 1958
  • [4] Image Semantic Segmentation Based on Convolutional Neural Networks for Monitoring Agricultural Vegetation
    Ganchenko, Valentin
    Doudkin, Alexander
    PATTERN RECOGNITION AND INFORMATION PROCESSING, PRIP 2019, 2019, 1055 : 52 - 63
  • [5] Semantic segmentation of UAV aerial videos using convolutional neural networks
    Girisha, S.
    Pai, Manohara M. M.
    Verma, Ujjwal
    Pai, Radhika M.
    2019 IEEE SECOND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND KNOWLEDGE ENGINEERING (AIKE), 2019, : 21 - 27
  • [6] A Semantic-based Scene segmentation using convolutional neural networks
    Shaaban, Aya M.
    Salem, Nancy M.
    Al-atabany, Walid, I
    AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2020, 125
  • [7] Semantic Image Segmentation with Deep Convolutional Neural Networks and Quick Shift
    Zhang, Sanxing
    Ma, Zhenhuan
    Zhang, Gang
    Lei, Tao
    Zhang, Rui
    Cui, Yi
    SYMMETRY-BASEL, 2020, 12 (03):
  • [8] Object Detection Using Convolutional Neural Networks
    Galvez, Reagan L.
    Bandala, Argel A.
    Dadios, Elmer P.
    Vicerra, Ryan Rhay P.
    Maningo, Jose Martin Z.
    PROCEEDINGS OF TENCON 2018 - 2018 IEEE REGION 10 CONFERENCE, 2018, : 2023 - 2027
  • [9] DOMAIN ADAPTATION FOR SEMANTIC SEGMENTATION USING CONVOLUTIONAL NEURAL NETWORKS
    Schenkel, Fabian
    Middelmann, Wolfgang
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 728 - 731
  • [10] Deep convolutional neural networks for semantic segmentation of cracks
    Wang, Jia-Ji
    Liu, Yu-Fei
    Nie, Xin
    Mo, Y. L.
    STRUCTURAL CONTROL & HEALTH MONITORING, 2022, 29 (01)