A Deep-Learning Network for Wheat Yield Prediction Combining Weather Forecasts and Remote Sensing Data

被引:1
|
作者
Peng, Dailiang [1 ,2 ]
Cheng, Enhui [1 ,2 ,3 ]
Feng, Xuxiang [4 ]
Hu, Jinkang [1 ,2 ,3 ]
Lou, Zihang [5 ]
Zhang, Hongchi [1 ,2 ,3 ]
Zhao, Bin [6 ]
Lv, Yulong [1 ,3 ]
Peng, Hao [3 ,7 ]
Zhang, Bing [1 ,3 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
[2] Int Res Ctr Big Data Sustainable Dev Goals, Beijing 100094, Peoples R China
[3] Univ Chinese Acad Sci, Coll Resource & Environm, Beijing 100049, Peoples R China
[4] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
[5] Zhejiang Univ, Coll Environm & Resource Sci, Zhejiang Key Lab Agr Remote Sensing & Informat Tec, Hangzhou 310058, Peoples R China
[6] Shandong Agr Univ, Sch Informat Sci & Engn, Tai An 271002, Peoples R China
[7] Chinese Acad Sci, Xinjiang Inst Ecol & Geog, Urumqi 830011, Xinjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
weather forecast data; wheat yield prediction; deep-learning; time series; CROP YIELD; CLIMATE DATA; MODEL; FRAMEWORK;
D O I
10.3390/rs16193613
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Accurately predicting winter wheat yield before harvest could greatly benefit decision-makers when making management decisions. In this study, we utilized weather forecast (WF) data combined with Sentinel-2 data to establish the deep-learning network and achieved an in-season county-scale wheat yield prediction in China's main wheat-producing areas. We tested a combination of short-term WF data from the China Meteorological Administration to predict in-season yield at different forecast lengths. The results showed that explicitly incorporating WF data can improve the accuracy in crop yield predictions [Root Mean Square Error (RMSE) = 0.517 t/ha] compared to using only remote sensing data (RMSE = 0.624 t/ha). After comparing a series of WF data with different time series lengths, we found that adding 25 days of WF data can achieve the highest yield prediction accuracy. Specifically, the highest accuracy (RMSE = 0.496 t/ha) is achieved when predictions are made on Day of The Year (DOY) 215 (40 days before harvest). Our study established a deep-learning model which can be used for early yield prediction at the county level, and we have proved that weather forecast data can also be applied in data-driven deep-learning yield prediction tasks.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Developing automated machine learning approach for fast and robust crop yield prediction using a fusion of remote sensing, soil, and weather dataset
    Kheir, Ahmed M. S.
    Govind, Ajit
    Nangia, Vinay
    Devkota, Mina
    Elnashar, Abdelrazek
    Omar, Mohie El Din
    Feike, Til
    ENVIRONMENTAL RESEARCH COMMUNICATIONS, 2024, 6 (04):
  • [32] Improved Yield Prediction of Winter Wheat Using a Novel Two-Dimensional Deep Regression Neural Network Trained via Remote Sensing
    Morales, Giorgio
    Sheppard, John W.
    Hegedus, Paul B.
    Maxwell, Bruce D.
    SENSORS, 2023, 23 (01)
  • [33] A Multiple Instance Dictionary Learning Approach for Corn Yield Prediction From Remote Sensing Data
    Huang, Risheng
    Chen, Shuhan
    Li, Xiaorun
    Cao, Zeyu
    IEEE SENSORS JOURNAL, 2024, 24 (24) : 41702 - 41716
  • [34] Classification of Landscape Affected by Deforestation Using High-Resolution Remote Sensing Data and Deep-Learning Techniques
    Lee, Seong-Hyeok
    Han, Kuk-Jin
    Lee, Kwon
    Lee, Kwang-Jae
    Oh, Kwan-Young
    Lee, Moung-Jin
    REMOTE SENSING, 2020, 12 (20) : 1 - 16
  • [35] The Estimation of Winter Wheat Yield Based on MODIS Remote Sensing Data
    Huang, Linsheng
    Yang, Qinying
    Liang, Dong
    Dong, Yansheng
    Xu, Xingang
    Huang, Wenjiang
    COMPUTER AND COMPUTING TECHNOLOGIES IN AGRICULTURE V, PT II, 2012, 369 : 496 - +
  • [36] Deep learning-enhanced remote sensing-integrated crop modeling for rice yield prediction
    Jeong, Seungtaek
    Ko, Jonghan
    Ban, Jong-oh
    Shin, Taehwan
    Yeom, Jong-min
    ECOLOGICAL INFORMATICS, 2024, 84
  • [37] Ocean-Mixer: A Deep Learning Approach for Multi-Step Prediction of Ocean Remote Sensing Data
    Wang, Sai
    Fu, Guoping
    Song, Yongduo
    Wen, Jing
    Guo, Tuanqi
    Zhang, Hongjin
    Wang, Tuantuan
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024, 12 (03)
  • [38] Yield prediction in a peanut breeding program using remote sensing data and machine learning algorithms
    Pugh, N. Ace
    Young, Andrew
    Ojha, Manisha
    Emendack, Yves
    Sanchez, Jacobo
    Xin, Zhanguo
    Puppala, Naveen
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [39] Developing a Dual-Stream Deep-Learning Neural Network Model for Improving County-Level Winter Wheat Yield Estimates in China
    Huang, Hai
    Huang, Jianxi
    Feng, Quanlong
    Liu, Junming
    Li, Xuecao
    Wang, Xinlei
    Niu, Quandi
    REMOTE SENSING, 2022, 14 (20)
  • [40] Sub-Seasonal Forecasting With a Large Ensemble of Deep-Learning Weather Prediction Models
    Weyn, Jonathan A.
    Durran, Dale R.
    Caruana, Rich
    Cresswell-Clay, Nathaniel
    JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2021, 13 (07)