A Deep-Learning Network for Wheat Yield Prediction Combining Weather Forecasts and Remote Sensing Data

被引:0
|
作者
Peng, Dailiang [1 ,2 ]
Cheng, Enhui [1 ,2 ,3 ]
Feng, Xuxiang [4 ]
Hu, Jinkang [1 ,2 ,3 ]
Lou, Zihang [5 ]
Zhang, Hongchi [1 ,2 ,3 ]
Zhao, Bin [6 ]
Lv, Yulong [1 ,3 ]
Peng, Hao [3 ,7 ]
Zhang, Bing [1 ,3 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
[2] Int Res Ctr Big Data Sustainable Dev Goals, Beijing 100094, Peoples R China
[3] Univ Chinese Acad Sci, Coll Resource & Environm, Beijing 100049, Peoples R China
[4] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
[5] Zhejiang Univ, Coll Environm & Resource Sci, Zhejiang Key Lab Agr Remote Sensing & Informat Tec, Hangzhou 310058, Peoples R China
[6] Shandong Agr Univ, Sch Informat Sci & Engn, Tai An 271002, Peoples R China
[7] Chinese Acad Sci, Xinjiang Inst Ecol & Geog, Urumqi 830011, Xinjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
weather forecast data; wheat yield prediction; deep-learning; time series; CROP YIELD; CLIMATE DATA; MODEL; FRAMEWORK;
D O I
10.3390/rs16193613
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Accurately predicting winter wheat yield before harvest could greatly benefit decision-makers when making management decisions. In this study, we utilized weather forecast (WF) data combined with Sentinel-2 data to establish the deep-learning network and achieved an in-season county-scale wheat yield prediction in China's main wheat-producing areas. We tested a combination of short-term WF data from the China Meteorological Administration to predict in-season yield at different forecast lengths. The results showed that explicitly incorporating WF data can improve the accuracy in crop yield predictions [Root Mean Square Error (RMSE) = 0.517 t/ha] compared to using only remote sensing data (RMSE = 0.624 t/ha). After comparing a series of WF data with different time series lengths, we found that adding 25 days of WF data can achieve the highest yield prediction accuracy. Specifically, the highest accuracy (RMSE = 0.496 t/ha) is achieved when predictions are made on Day of The Year (DOY) 215 (40 days before harvest). Our study established a deep-learning model which can be used for early yield prediction at the county level, and we have proved that weather forecast data can also be applied in data-driven deep-learning yield prediction tasks.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Deep Gaussian Process for Crop Yield Prediction Based on Remote Sensing Data
    You, Jiaxuan
    Li, Xiaocheng
    Low, Melvin
    Lobell, David
    Ermon, Stefano
    THIRTY-FIRST AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 4559 - 4565
  • [22] Survey of Deep-Learning Approaches for Remote Sensing Observation Enhancement
    Tsagkatakis, Grigorios
    Aidini, Anastasia
    Fotiadou, Konstantina
    Giannopoulos, Michalis
    Pentari, Anastasia
    Tsakalides, Panagiotis
    SENSORS, 2019, 19 (18)
  • [23] Integrating Remote Sensing and Weather Variables for Mango Yield Prediction Using a Machine Learning Approach
    Torgbor, Benjamin Adjah
    Rahman, Muhammad Moshiur
    Brinkhoff, James
    Sinha, Priyakant
    Robson, Andrew
    REMOTE SENSING, 2023, 15 (12)
  • [24] Deep-STEP: A Deep Learning Approach for Spatiotemporal Prediction of Remote Sensing Data
    Das, Monidipa
    Ghosh, Soumya K.
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (12) : 1984 - 1988
  • [25] Wheat yield estimation using remote sensing data based on machine learning approaches
    Cheng, Enhui
    Zhang, Bing
    Peng, Dailiang
    Zhong, Liheng
    Yu, Le
    Liu, Yao
    Xiao, Chenchao
    Li, Cunjun
    Li, Xiaoyi
    Chen, Yue
    Ye, Huichun
    Wang, Hongye
    Yu, Ruyi
    Hu, Jinkang
    Yang, Songlin
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [26] STRATIFIED MACHINE LEARNING MODELS FOR WHEAT YIELD ESTIMATION USING REMOTE SENSING DATA
    Khechba, Keltoum
    Belgiu, Mariana
    Laamrani, Ahmed
    Dong, Qi
    Stein, Alfred
    Chehbouni, Abdelghani
    IGARSS 2024-2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, IGARSS 2024, 2024, : 1946 - 1949
  • [27] SOYBEAN CROP YIELD PREDICTION BY INTEGRATION OF REMOTE SENSING AND WEATHER OBSERVATIONS
    Mohite, J. D.
    Sawant, S. A.
    Pandit, A.
    Agrawal, R.
    Pappula, S.
    39TH INTERNATIONAL SYMPOSIUM ON REMOTE SENSING OF ENVIRONMENT ISRSE-39 FROM HUMAN NEEDS TO SDGS, VOL. 48-M-1, 2023, : 197 - 202
  • [28] Regional aerosol forecasts based on deep learning and numerical weather prediction
    Yulu Qiu
    Jin Feng
    Ziyin Zhang
    Xiujuan Zhao
    Ziming Li
    Zhiqiang Ma
    Ruijin Liu
    Jia Zhu
    npj Climate and Atmospheric Science, 6
  • [29] Regional aerosol forecasts based on deep learning and numerical weather prediction
    Qiu, Yulu
    Feng, Jin
    Zhang, Ziyin
    Zhao, Xiujuan
    Li, Ziming
    Ma, Zhiqiang
    Liu, Ruijin
    Zhu, Jia
    NPJ CLIMATE AND ATMOSPHERIC SCIENCE, 2023, 6 (01)
  • [30] Weather based wheat yield prediction using machine learning
    Gupta, Shreya
    Vashisth, Ananta
    Krishnan, P.
    Lama, Achal
    SHIVPRASAD
    Aravind, K. S.
    MAUSAM, 2024, 75 (03): : 639 - 648