A trainable hierarchical hiddens Markov tree model for color image annotation

被引:0
作者
Cheng, Li [1 ]
Caelli, Terry [1 ]
Ochoa, Victor [1 ]
机构
[1] Department of Computing Science, Research Institute for Multimedia Systems (RIMS), University of Alberta, Edmonton, Alta. T6G 2E9, Canada
来源
Proceedings - International Conference on Pattern Recognition | 2002年 / 16卷 / 01期
关键词
Algorithms - Color image processing - Markov processes - Mathematical models - Trees (mathematics);
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider how to annotate or label regions of grey-level or multispectral images based upon known labels and a set of interacting hierarchical doubly stochastic processes. The proposed model extends current work on the use of hierarchical Markavian models for image processing using multiscale representations. In this paper we explore a new bijective up-down algorithm whereby the spatio-spectral context of specific image region signatures are encoded via different types of trainable support kernels for the upward and downward Operations. © 2002 IEEE.
引用
收藏
页码:192 / 195
相关论文
共 50 条
[41]   Utilizing Markov Chain for Offline Image Content Annotation [J].
Sun, Zhonghua ;
Jia, Kebin .
JOURNAL OF INTERNET TECHNOLOGY, 2016, 17 (04) :753-759
[42]   A New Model for Color Image Compression using Modified Hierarchical Prediction [J].
Sathappan, S. ;
Babu, P. Suresh .
PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON APPLIED AND THEORETICAL COMPUTING AND COMMUNICATION TECHNOLOGY (ICATCCT), 2015, :675-680
[43]   Medical Image Denoising using Hierarchical Hidden Markov Model in the Wavelet Domain [J].
Zhang, Jixiang ;
Zhang, Xiangling ;
Pei, Zhijun .
PROCEEDINGS OF THE FIRST INTERNATIONAL WORKSHOP ON EDUCATION TECHNOLOGY AND COMPUTER SCIENCE, VOL II, 2009, :857-860
[44]   A hierarchical markov random field model and multitemperature annealing for parallel image classification [J].
Kato, Z ;
Berthod, M ;
Zerubia, J .
GRAPHICAL MODELS AND IMAGE PROCESSING, 1996, 58 (01) :18-37
[45]   Smart Annotation of Cyclic Data Using Hierarchical Hidden Markov Models [J].
Martindale, Christine F. ;
Hoenig, Florian ;
Strohrmann, Christina ;
Eskofier, Bjoern M. .
SENSORS, 2017, 17 (10)
[46]   TSVM-HMM: Transductive SVM based hidden Markov model for automatic image annotation [J].
Zhao, Yufeng ;
Zhao, Yao ;
Zhu, Zhenfeng .
EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (06) :9813-9818
[47]   Automatic image annotation based on WordNet and hierarchical ensembles [J].
Li, W ;
Sun, M .
COMPUTATIONAL LINGUISTICS AND INTELLIGENT TEXT PROCESSING, 2006, 3878 :417-428
[48]   DHCN: DEEP HIERARCHICAL CONTEXT NETWORKS FOR IMAGE ANNOTATION [J].
Jiu, Mingyuan ;
Sahbi, Hichem .
2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, :3810-3814
[49]   A probability model for image annotation [J].
Ge, Yong ;
Hong, Richang ;
Gu, Zhiwei ;
Zhang, Rong ;
Wu, Xiuqing .
2007 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOLS 1-5, 2007, :827-830
[50]   A new model for image annotation [J].
Marukatat, Sanparith .
ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, 2008, 5012 :958-963