Data refinement for enhanced ionic conductivity prediction in garnet-type solid-state electrolytes

被引:0
作者
Kharbouch, Zakaria [1 ]
Bouchaara, Mustapha [1 ,2 ]
Elkouihen, Fadila [1 ]
Habbal, Abderrahmane [2 ,3 ]
Ratnani, Ahmed [2 ]
Faik, Abdessamad [1 ]
机构
[1] Univ Mohammed VI Polytech, Lab Inorgan Mat Sustainable Energy Technol LIMSET, Benguerir 43150, Morocco
[2] Univ Mohammed VI Polytech, UM6P Vanguard Ctr, Benguerir 43150, Morocco
[3] Cote dAzur Univ, Inria, CNRS, LJAD UMR 7351, Parc Valrose, F-06108 Nice 02, France
关键词
LLZO-type garnet; Solid-state electrolyte; Machine learning; Ionic conductivity prediction; DOPED LI7LA3ZR2O12;
D O I
10.1016/j.ssi.2024.116713
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The demand for advanced energy storage drives an urgency to accelerate material discovery in solid-state electrolytes. In pursuit of this aim, this study presents an innovative methodology that integrates materials science insights with machine learning techniques to improve the ionic conductivity prediction in garnet-based solid electrolytes. Utilizing an expanded dataset comprising 362 data points, and exploiting easily obtainable presynthesis inputs, our approach incorporates rigorous data preprocessing inspired by materials science and machine learning methodologies. Through systematic feature selection and hyperparameter tuning, the model achieved an improved R-squared value of 0.85. This study highlights the efficacy of the proposed approach and underscores the potential of machine learning in streamlining materials discovery and design for next-generation solid-state batteries.
引用
收藏
页数:8
相关论文
共 42 条
  • [21] A review of the recent progress in battery informatics
    Ling, Chen
    [J]. NPJ COMPUTATIONAL MATERIALS, 2022, 8 (01)
  • [22] Improving ionic conductivity of garnet solid-state electrolytes using Gradient boosting regression optimized machine learning
    Ma, Yue
    Han, Shaoxiong
    Sun, Yan
    Cui, Zhenming
    Liu, Pengyu
    Wang, Xiaomin
    Wang, Yongzhen
    [J]. JOURNAL OF POWER SOURCES, 2024, 604
  • [23] First-Principles Studies on Cation Dopants and ElectrolytelCathode Interphases for Lithium Garnets
    Miara, Lincoln J.
    Richards, William Davidson
    Wang, Yan E.
    Ceder, Gerbrand
    [J]. CHEMISTRY OF MATERIALS, 2015, 27 (11) : 4040 - 4047
  • [24] Exploring the Possibility of Machine Learning for Predicting Ionic Conductivity of Solid-State Electrolytes
    Mishra, Atul Kumar
    Rajput, Snehal
    Karamta, Meera
    Mukhopadhyay, Indrajit
    [J]. ACS OMEGA, 2023, 8 (18): : 16419 - 16427
  • [25] Fast lithium ion conduction in garnet-type Li7La3Zr2O12
    Murugan, Ramaswamy
    Thangadurai, Venkataraman
    Weppner, Werner
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (41) : 7778 - 7781
  • [26] Microstructure and properties investigation of garnet structured Li7La3Zr2O12 as electrolyte for all-solid-state batteries
    Nonemacher, Juliane Franciele
    Hueter, Claas
    Zheng, Hao
    Malzbender, Juergen
    Krueger, Manja
    Spatschek, Robert
    Finsterbusch, Martin
    [J]. SOLID STATE IONICS, 2018, 321 : 126 - 134
  • [27] A novel solid-liquid route for synthesizing cubic garnet Al-substituted Li7La3Zr2O12
    Pan, Xing Xing
    Wang, Jian Xin
    Chang, Xiao Hui
    Li, Ya Dong
    Guan, Wan Bing
    [J]. SOLID STATE IONICS, 2018, 317 : 1 - 6
  • [28] Solid electrolytes for Li-ion batteries via machine learning
    Pereznieto, Santiago
    Jaafreh, Russlan
    Kim, Jung-gu
    Hamad, Kotiba
    [J]. MATERIALS LETTERS, 2023, 337
  • [29] Prokhorenkova L, 2018, ADV NEUR IN, V31
  • [30] Raju M M., 2021, Electrochem, V2, P390, DOI DOI 10.3390/ELECTROCHEM2030026