Data refinement for enhanced ionic conductivity prediction in garnet-type solid-state electrolytes

被引:0
作者
Kharbouch, Zakaria [1 ]
Bouchaara, Mustapha [1 ,2 ]
Elkouihen, Fadila [1 ]
Habbal, Abderrahmane [2 ,3 ]
Ratnani, Ahmed [2 ]
Faik, Abdessamad [1 ]
机构
[1] Univ Mohammed VI Polytech, Lab Inorgan Mat Sustainable Energy Technol LIMSET, Benguerir 43150, Morocco
[2] Univ Mohammed VI Polytech, UM6P Vanguard Ctr, Benguerir 43150, Morocco
[3] Cote dAzur Univ, Inria, CNRS, LJAD UMR 7351, Parc Valrose, F-06108 Nice 02, France
关键词
LLZO-type garnet; Solid-state electrolyte; Machine learning; Ionic conductivity prediction; DOPED LI7LA3ZR2O12;
D O I
10.1016/j.ssi.2024.116713
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The demand for advanced energy storage drives an urgency to accelerate material discovery in solid-state electrolytes. In pursuit of this aim, this study presents an innovative methodology that integrates materials science insights with machine learning techniques to improve the ionic conductivity prediction in garnet-based solid electrolytes. Utilizing an expanded dataset comprising 362 data points, and exploiting easily obtainable presynthesis inputs, our approach incorporates rigorous data preprocessing inspired by materials science and machine learning methodologies. Through systematic feature selection and hyperparameter tuning, the model achieved an improved R-squared value of 0.85. This study highlights the efficacy of the proposed approach and underscores the potential of machine learning in streamlining materials discovery and design for next-generation solid-state batteries.
引用
收藏
页数:8
相关论文
共 42 条
  • [1] Improving ionic conductivity of doped Li7La3Zr2O12 using optimized machine learning with simplistic descriptors
    Adhyatma, Abdurrahman
    Xu, Yijie
    Hawari, Naufal Hanif
    Palar, Pramudita Satria
    Sumboja, Afriyanti
    [J]. MATERIALS LETTERS, 2022, 308
  • [2] Optuna: A Next-generation Hyperparameter Optimization Framework
    Akiba, Takuya
    Sano, Shotaro
    Yanase, Toshihiko
    Ohta, Takeru
    Koyama, Masanori
    [J]. KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 2623 - 2631
  • [3] Garnet related lithium ion conductor processed by spark plasma sintering for all solid state batteries
    Baek, Seung-Wook
    Lee, Jae-Myung
    Kim, Tae Young
    Song, Min-Sang
    Park, Youngsin
    [J]. JOURNAL OF POWER SOURCES, 2014, 249 : 197 - 206
  • [4] Cao SY, 2019, J KOREAN CERAM SOC, V56, P111
  • [5] Predictive modeling and design rules for solid electrolytes
    Ceder, Gerbrand
    Ong, Shyue Ping
    Wang, Yan
    [J]. MRS BULLETIN, 2018, 43 (10) : 746 - 751
  • [6] Root mean square error (RMSE) or mean absolute error (MAE)? - Arguments against avoiding RMSE in the literature
    Chai, T.
    Draxler, R. R.
    [J]. GEOSCIENTIFIC MODEL DEVELOPMENT, 2014, 7 (03) : 1247 - 1250
  • [7] Recent progress of theoretical research on inorganic solid state electrolytes for Li metal batteries
    Chen, Weijian
    Li, Yafei
    Feng, Daochen
    Lv, Chuanyang
    Li, Huaxin
    Zhou, Shoubin
    Jiang, Qinhai
    Yang, Jianguo
    Gao, Zengliang
    He, Yanming
    Luo, Jiayan
    [J]. JOURNAL OF POWER SOURCES, 2023, 561
  • [8] Li+ transport properties of W substituted Li7La3Zr2O12 cubic lithium garnets
    Dhivya, L.
    Janani, N.
    Palanivel, B.
    Murugan, Ramaswamy
    [J]. AIP ADVANCES, 2013, 3 (08):
  • [9] Dorogush AV., 2018, ARXIV
  • [10] All solid state lithium batteries based on lamellar garnet-type ceramic electrolytes
    Du, Fuming
    Zhao, Ning
    Li, Yiqiu
    Chen, Cheng
    Liu, Ziwei
    Guo, Xiangxin
    [J]. JOURNAL OF POWER SOURCES, 2015, 300 : 24 - 28