Hydrogen supply chain;
Expansion planning;
Hydrogen production investment;
Transport network;
Hydrogen refueling stations;
DESIGN;
STORAGE;
INFRASTRUCTURE;
OPTIMIZATION;
OPERATION;
NETWORK;
D O I:
10.1016/j.rser.2024.114536
中图分类号:
X [环境科学、安全科学];
学科分类号:
08 ;
0830 ;
摘要:
The global commitment to the Paris Agreement has triggered the development of national hydrogen strategies and roadmaps in numerous countries. For seamless execution of a hydrogen strategy, the model employed in roadmap optimization must consider intricate operational details. This study offers a comprehensive multiperiod model for hydrogen supply chain (HSC) expansion planning, spanning production to distribution. The model optimizes facility timing, location, type, and capacity while considering efficient operational strategies. Hydrogen, sourced diversely, anchors the supply chain, supported by precise calculations for road-based transport and pipelines. Storage facilities adapt to supply sources and transportation methods, addressing supply-demand fluctuations and transport interruptions. Hydrogen refueling stations (HRS) are optimized for efficient urban distribution. Analyzing South Korea's HSC in this model reveals a shift towards green hydrogen in later stages, initially relying on refineries and imports. Investments transition from pipelines to liquid (LH2) and gaseous (GH(2)) hydrogen trucks in the early phases, eventually incorporating NH3 tanker trucks. The model predicts a decreasing levelized cost of hydrogen (LCOH), reaching $3.89/kg through HSC expansion planning. The model predicts a decreasing LCOH, reaching $3.89/kg through strategic HSC expansion. Transportation costs, playing a significant role in the final LCOH, are crucial for South Korea to achieve its target of 3000 KRW/ kg. These results offer valuable insights for nations advancing hydrogen initiatives, providing a detailed cost breakdown model to guide policy planning and achieve HSC and LCOH objectives effectively. Also, the study showcases Korea's adeptness in transitioning to a hydrogen-based economy.
机构:
Uppsala Univ, Dept Informat Technol, Comp Sci Div, Uppsala, SwedenUppsala Univ, Dept Informat Technol, Comp Sci Div, Uppsala, Sweden
Forghani, Kamran
Kia, Reza
论文数: 0引用数: 0
h-index: 0
机构:
Birmingham City Univ, Fac Comp Engn & Built Environm, Sch Engn & Built Environm, Dept Engn, Birmingham B4 7XG, England
German Univ Technol Oman GUtech, Fac Business & Econ, Dept Logist Tourism & Serv Management, Muscat, OmanUppsala Univ, Dept Informat Technol, Comp Sci Div, Uppsala, Sweden
机构:
Chung Ang Univ, Sch Chem Engn & Mat Sci, Seoul 06979, South KoreaChung Ang Univ, Sch Chem Engn & Mat Sci, Seoul 06979, South Korea
Yoon, Ha-Jun
Seo, Seung-Kwon
论文数: 0引用数: 0
h-index: 0
机构:
Chung Ang Univ, Sch Chem Engn & Mat Sci, Seoul 06979, South KoreaChung Ang Univ, Sch Chem Engn & Mat Sci, Seoul 06979, South Korea
Seo, Seung-Kwon
Lee, Chul-Jin
论文数: 0引用数: 0
h-index: 0
机构:
Chung Ang Univ, Sch Chem Engn & Mat Sci, Seoul 06979, South Korea
Chung Ang Univ, Dept Intelligent Energy & Ind, Seoul 06979, South KoreaChung Ang Univ, Sch Chem Engn & Mat Sci, Seoul 06979, South Korea