Broadband hybrid organic/CuInSe2 quantum dot photodetectors

被引:52
作者
Guo R. [1 ]
Shen T. [1 ]
Tian J. [1 ]
机构
[1] Institute for Advanced Materials and Technology, University of Science and Technology, Beijing
来源
Tian, Jianjun (tianjianjun@mater.ustb.edu.cn) | 2018年 / Royal Society of Chemistry卷 / 06期
基金
中国国家自然科学基金;
关键词
This work was supported by the National Science Foundation of China (51774034; 51772026; and; 51611130063); Beijing Natural Science Foundation (2182039); Fundamental Research Funds for the Central Universities (FRF-BD-16-012A) and 111 Project (No. B17003);
D O I
10.1039/c8tc00288f
中图分类号
学科分类号
摘要
"Green" narrow band-gap CuInSe2 quantum dots (QDs) were first introduced in photodetectors. Thus, a broadband hybrid photodetector was obtained by combining the ultraviolet detection of spiro-OMeTAD and the near-infrared detection of CuInSe2 QDs. In order to improve the detection of the device, the oil-soluble CuInSe2 QDs were transformed into water-soluble MPA-capped QDs through ligand exchange, which drastically shortened the length of the surface ligand. The specific detectivity (D∗) of the photodetector reached 1.6 × 1012 Jones at 330 nm and 7.5 × 1010 Jones at a 1000 nm wavelength. The unencapsulated device also displayed a fast response time (<0.02 s) and excellent thermal stability (20-100 °C) in ambient air. This work could open a window of toxic-free QD based photodetectors to achieve a broadband response. © 2018 The Royal Society of Chemistry.
引用
收藏
页码:2573 / 2579
页数:6
相关论文
共 51 条
[1]  
Kim J.Y., Voznyy O., Zhitomirsky D., Sargent E.H., Adv. Mater., 25, pp. 4986-5010, (2013)
[2]  
Kim M.R., Ma D., J. Phys. Chem. Lett., 6, pp. 85-99, (2015)
[3]  
Tian J., Lv L., Fei C., Wang Y., Liu X., Cao G., J. Mater. Chem. A, 2, pp. 19653-19659, (2014)
[4]  
Zhang J., Yang Y., Deng H., Farooq U., Yang X., Khan J., Tang J., Song H., ACS Nano, 11, pp. 9294-9302, (2017)
[5]  
Leng M., Chen Z., Yang Y., Li Z., Zeng K., Li K., Niu G., He Y., Zhou Q., Tang J., Angew. Chem., Int. Ed., 55, pp. 15012-15016, (2016)
[6]  
Li X., Wang Y., Sun H., Zeng H., Adv. Mater., 29, (2017)
[7]  
Tian J., Uchaker E., Zhang Q., Cao G., ACS Appl. Mater. Interfaces, 6, pp. 4466-4472, (2014)
[8]  
Tian J., Zhang Q., Uchaker E., Liang Z., Gao R., Qu X., Zhang S., Cao G., J. Mater. Chem. A, 1, pp. 6770-6775, (2013)
[9]  
Ruhle S., Shalom M., Zaban A., ChemPhysChem, 11, pp. 2290-2304, (2010)
[10]  
Cao S., Zheng J., Zhao J., Yang Z., Li C., Guan X., Yang W., Shang M., Wu T., ACS Appl. Mater. Interfaces, 9, pp. 15605-15614, (2017)