Qudit-based variational quantum eigensolver using photonic orbital angular momentum states

被引:1
作者
Kim, Byungjoo [1 ,2 ]
Hu, Kang-Min [1 ,3 ]
Sohn, Myung-Hyun [1 ,4 ]
Kim, Yosep [1 ,5 ]
Kim, Yong-Su [1 ,3 ]
Lee, Seung-Woo [1 ]
Lim, Hyang-Tag [1 ,3 ]
机构
[1] Korea Inst Sci & Technol KIST, Ctr Quantum Technol, Seoul 02792, South Korea
[2] Korea Inst Machinery & Mat KIMM, Dept Laser & Electron Beam Technol, Daejeon 34103, South Korea
[3] Korea Univ Sci & Technol, KIST Sch, Div Quantum Informat, Seoul 02792, South Korea
[4] Kyung Hee Univ, Dept Appl Phys, Yongin 17104, South Korea
[5] Korea Univ, Dept Phys, Seoul 02841, South Korea
来源
SCIENCE ADVANCES | 2024年 / 10卷 / 43期
基金
新加坡国家研究基金会;
关键词
ENTANGLEMENT; MODES;
D O I
10.1126/sciadv.ado3472
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Solving the electronic structure problem is a notorious challenge in quantum chemistry and material science. Variational quantum eigensolver (VQE) is a promising hybrid classical-quantum algorithm for finding the lowest-energy configuration of a molecular system. However, it typically requires many qubits and quantum gates with substantial quantum circuit depth to accurately represent the electronic wave function of complex structures. Here, we propose an alternative approach to solve the electronic structure problem using VQE with a single qudit. Our approach exploits a high-dimensional orbital angular momentum state of a heralded single photon and notably reduces the required quantum resources compared to conventional multi-qubit-based VQE. We experimentally demonstrate that our single-qudit-based VQE can efficiently estimate the ground state energy of hydrogen (H2) and lithium hydride (LiH) molecular systems corresponding to two- and four-qubit systems, respectively. We believe that our scheme opens a pathway to perform a large-scale quantum simulation for solving more complex problems in quantum chemistry and material science.
引用
收藏
页数:7
相关论文
共 57 条
  • [51] Research of optical vortex's energy efficiency and diffraction angle based on spatial light modulator
    Shao, Wei
    Huang, Su-Juan
    Chen, Mu-Sheng
    Liu, Xian-Peng
    Xie, Wan-Cai
    [J]. OPTICAL ENGINEERING, 2017, 56 (08)
  • [52] The Variational Quantum Eigensolver: A review of methods and best practices
    Tilly, Jules
    Chen, Hongxiang
    Cao, Shuxiang
    Picozzi, Dario
    Setia, Kanav
    Li, Ying
    Grant, Edward
    Wossnig, Leonard
    Rungger, Ivan
    Booth, George H.
    Tennyson, Jonathan
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2022, 986 : 1 - 128
  • [53] Qudits and High-Dimensional Quantum Computing
    Wang, Yuchen
    Hu, Zixuan
    Sanders, Barry C.
    Kais, Sabre
    [J]. FRONTIERS IN PHYSICS, 2020, 8
  • [54] Experimental demonstration of efficient high-dimensional quantum gates with orbital angular momentum
    Wang, Yunlong
    Ru, Shihao
    Wang, Feiran
    Zhang, Pei
    Li, Fuli
    [J]. QUANTUM SCIENCE AND TECHNOLOGY, 2022, 7 (01)
  • [55] Optical communications using orbital angular momentum beams
    Willner, A. E.
    Huang, H.
    Yan, Y.
    Ren, Y.
    Ahmed, N.
    Xie, G.
    Bao, C.
    Li, L.
    Cao, Y.
    Zhao, Z.
    Wang, J.
    Lavery, M. P. J.
    Tur, M.
    Ramachandran, S.
    Molisch, A. F.
    Ashrafi, N.
    Ashrafi, S.
    [J]. ADVANCES IN OPTICS AND PHOTONICS, 2015, 7 (01): : 66 - 106
  • [56] Decoherence of orbital angular momentum tangled photons in non-Kolmogorov turbulence
    Yan, X.
    Zhang, Peng F.
    Zhang, Jing H.
    Chun, H. Qiao
    Fan, Cheng Y.
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2016, 33 (09) : 1831 - 1835
  • [57] Orbital angular momentum: origins, behavior and applications
    Yao, Alison M.
    Padgett, Miles J.
    [J]. ADVANCES IN OPTICS AND PHOTONICS, 2011, 3 (02): : 161 - 204