Preparation and performance of photocatalyst TiO2-Pt/CuS

被引:0
作者
Han, Yanhe [1 ]
Lu, Chenghao [1 ]
Cheng, Qi [1 ]
Liu, Chengqing [1 ]
Li, Yihan [1 ]
Chen, Jiaqing [1 ]
机构
[1] Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing
来源
Gongneng Cailiao/Journal of Functional Materials | 2015年 / 46卷 / 09期
关键词
Composite semiconductor; CuS; Photocatalysis; TiO[!sub]2[!/sub;
D O I
10.3969/j.issn.1001-9731.2015.09.017
中图分类号
学科分类号
摘要
The TiO2/Pt and TiO2-Pt/CuS nano-crystalline photocatalystes were prepared by electrochemical deposition of Pt and chemical deposition of CuS on TiO2 nanotube array electrode fabricated using anodic oxidation method. Scanning electron microscope (SEM) and transmission electron microscopy (TEM) were used to characterize the morphology of TiO2, TiO2-Pt and TiO2-Pt/CuS. Energy dispersive spectrometer (EDS) was used to investigate the elemental structures of photocatalystes. The photocatalytic activities of the prepared samples were investigated by using photocatalytic degradation of H2O and organic compounds as model reactions in solution. The results showed that TiO2 nanotube array can maintain the original morphology under Pt electrochemical deposition and CuS chemical deposition. Pt can deposit in the TiO2 nanotube. Some CuS can form a mixed-phase with Pt on the surface of the TiO2 nanotube array electrode. The results obtained from the hydrolysis and the degradation of organic compounds showed that the order of photocatalytic activities of the prepared samples was TiO2-Pt/CuS>TiO2-Pt>TiO2. ©, 2015, Journal of Functional Materials. All right reserved.
引用
收藏
页码:09086 / 09091
页数:5
相关论文
共 19 条
[11]  
Kasuga T., Hiramatsu M., Hoson A., Et al., Titania nanotubes prepared by chemical processing, Adv Mater, 11, 15, pp. 1307-1311, (1999)
[12]  
Ma R.Z., Bando Y., Sasaki T., Nanotubes of lepidocrocite titanates, Chem Phys Lett, 380, 5-6, pp. 577-582, (2003)
[13]  
Tsai C.C., Nian J.N., Teng H.S., Mesoporous nanotube aggregates obtained from hydrothermally treating TiO<sub>2</sub> with NaOH, Appl Surf Sci, 253, 4, pp. 1898-1902, (2006)
[14]  
Chen Q., Zhou W.Z., Du G.H., Et al., Trititanate nanotubes made via a single alkali treatment, Adv Mater, 14, 17, pp. 1208-1211, (2002)
[15]  
Chen X., Li Y., Peng S., Cd<sub>x</sub>Zn<sub>1-x</sub>S-sensitied TiO<sub>2</sub> nanotube array electrode for photoelectrocatalytic hydrogen evolution, Journal of Functional Materials, 45, 3, pp. 03061-03065, (2014)
[16]  
Liu J., Zhu Z., Zhang J., Et al., Research of S-doped modified TiO<sub>2</sub> photocatalyst, Journal of Functional Materials, 45, 1, pp. 01006-01009, (2014)
[17]  
Yan W., Wang D., Chen L., Et al., Properties and photoelectrocatalytic activity of In<sub>2</sub>O<sub>3</sub>-sensitized ZnO nanorod array, Acta Physico-Chimica Sinica, 29, 5, pp. 1021-1027, (2013)
[18]  
Zhang S.Q., Wen W., Jiang D.L., Et al., Photoelectrochemical characterisation of TiO<sub>2</sub> thin films derived from microwave hydrothermally processed nanocrystalline colloids, J Photochem Photobiol A, 179, 3, pp. 305-313, (2006)
[19]  
Han Y.H., Zhang S.Q., Zhao H.J., Et al., Photoelectrochemical characterization of a robust TiO<sub>2</sub>/BDD heterojunction electrode for sensing application in aqueous solutions, Langmuir, 26, 8, pp. 6033-6040, (2010)