Adaptive Interaction Control for Lower Limb Rehabilitation Robots

被引:0
作者
Du Y.-H. [1 ]
Qiu S. [1 ]
Xie P. [1 ]
Guo Z.-H. [1 ]
Wu X.-G. [1 ]
Li X.-L. [1 ]
机构
[1] Key Lab of Measurement Technology and Instrumentation of Hebei Province, Institute of Electric Engineering, Yanshan University, Qinhuangdao
来源
Zidonghua Xuebao Acta Auto. Sin. | / 4卷 / 743-750期
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Adaptive control; Human-machine interaction; Lower limb rehabilitation robot; Motion intention;
D O I
10.16383/j.aas.2017.c160128
中图分类号
学科分类号
摘要
Aiming at the problem of human-machine interaction in rehabilitation robot0s movement, we propose an adaptive control strategy for lower limb rehabilitation robots. During flexion and extension, the surface electromyography (sEMG) of lower limbs and plantar pressure features are extracted respectively to represent lower limbs0 motion intention and interaction force (IF). An sEMG-IF based human-machine interaction and information fusion model is established to program the motion trails of the rehabilitation robot online. Considering the human-machine interaction in active rehabilitation, a man-machine system dynamic model with time-varying dynamic characteristics is established. An indirect fuzzy adaptive controller is designed to trace and control the desired trajectory, and achieve adaptive interactive control of the lower limb rehabilitation robot. Validity and feasibility of the proposed strategy are verified by analysis of the data from 5 subjects under limb movement with the rehabilitation robot. Copyright © 2018 Acta Automatica Sinica. All rights reserved.
引用
收藏
页码:743 / 750
页数:7
相关论文
共 14 条
  • [1] Lo A.C., Guarino P.D., Richards L.G., Haselkorn J.K., Wittenberg G.F., Federman D.G., Ringer R.J., Wagner T.H., Krebs H.I., Volpe B.T., Bever C.T., Bravata D.M., Duncan P.W., Corn B.H., Maffucci A.D., Nadeau S.E., Conroy S.S., Powell J.M., Huang G.D., Peduzzi P., Robot-assisted therapy for long-term upper-limb impairment after stroke, New England Journal of Medicine, 362, 19, pp. 1772-1783, (2010)
  • [2] Klamroth-Marganska V., Blanco J., Campen K., Curt A., Dietz V., Ettlin T., Felder M., Fellinghauer B., Guidali M., Kollmar A., Luft A., Nef T., Schuster-Amft C., Stahel W., Riener R., Three-dimensional, task-specific robot therapy of the arm after stroke: a multicentre, parallel-group randomised trial, The Lancet Neurology, 13, 2, pp. 159-166, (2014)
  • [3] Meng W., Liu Q., Zhou Z.D., Ai Q.S., Sheng B., Xie S.Q., Recent development of mechanisms and control strategies for robot-assisted lower limb rehabilitation, Mechatronics, 31, pp. 132-145, (2015)
  • [4] Peng L., Hou Z.-G., Wang W.-Q., Synchronous active interaction control and its implementation for a rehabilitation robot, Acta Automatica Sinica, 41, 11, pp. 1837-1846, (2015)
  • [5] Tong L.-N., Hou Z.-G., Peng L., Wang W.-Q., Chen Y.-X., Tan M., Multi-channel sEMG time series analysis based human motion recognition method, Acta Automatica Sinica, 40, 5, pp. 810-821, (2014)
  • [6] Pittaccio S., Viscuso S., An EMG-controlled SMA device for the rehabilitation of the ankle joint in post-acute stroke, Journal of Materials Engineering and Performance, 20, 4-5, pp. 666-670, (2011)
  • [7] Song R., Tong K.Y., Hu X.L., Zhou W., Myoelectrically controlled wrist robot for stroke rehabilitation, Journal of Neuroengineering and Rehabilitation, 10, 1, (2013)
  • [8] Hu J., Hou Z.-G., Chen Y.-X., Zhang F., Wang W.-Q., Lower limb rehabilitation robots and interactive control methods, Acta Automatica Sinica, 40, 11, pp. 2377-2390, (2014)
  • [9] Saglia J.A., Tsagarakis N.G., Dai J.S., Caldwell D.G., Control strategies for patient-assisted training using the ankle rehabilitation robot (ARBOT), IEEE/ASME Transactions on Mechatronics, 18, 6, pp. 1799-1808, (2013)
  • [10] Duschau-Wicke A., Von Zitzewitz J., Caprez A., Lunenburger L., Riener R., Path control: a method for patient-cooperative robot-aided gait rehabilitation, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 18, 1, pp. 38-48, (2010)