Many-body theory of trions in two-dimensional nanostructures

被引:0
|
作者
Sheng, Weidong [1 ,2 ]
机构
[1] Fudan Univ, State Key Lab Surface Phys, Shanghai 200433, Peoples R China
[2] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Trions; Many-body theory; Configuration interaction; 2D nanostructures; BINDING-ENERGY; EXCITONS; STATES;
D O I
10.1007/s00339-024-08047-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A many-body theory of trions is presented for strongly correlated systems with an analytical expression of trion binding energy being obtained. When there are extra electrons at present, an optical excitation with lower energy may occur besides the exciton peak (X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X$$\end{document}), which is usually attributed to the creation of a negatively charged exciton (X-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X<^>-$$\end{document}), commonly known as a trion. The energy difference between the X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X$$\end{document} and X-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X<^>-$$\end{document} peaks was commonly regarded for the trion binding energy Delta X-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Delta _{X<^>-} $$\end{document}, which is later however proposed to be Delta X-+Delta E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Delta _{X<^>-} + \Delta E $$\end{document} with an energy part Delta E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Delta E $$\end{document} not accurately known for decades. In this work it is deduced that Delta E=Uee-Delta qp(N+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Delta E = U_{ee} - \Delta _{qp}(N\text{+1 }) $$\end{document} for a confined N-electron system where Uee\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ U_{ee} $$\end{document} is the interaction energy of two electrons and Delta qp(N+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Delta _{qp}(N\text{+1 }) $$\end{document} is the quasiparticle gap of the system with an extra charge. By using a configuration interaction approach, the newly developed theory is applied to study the correlated trion states in phosphorene nanostructures. The energy part Delta E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Delta E $$\end{document} is shown to be crucial to obtain the trion binding energies that have the correct dielectric dependence. In the case of SiO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \text{ SiO}_2 $$\end{document} substrate, our result finds that the binding energy of a negative trion in a rectangular phosphorene nanoflake with 98 atoms is around 63 meV, which agrees well with the recent experimental value of 70 meV.
引用
收藏
页数:7
相关论文
共 50 条