Microstructure characteristics and mechanical properties of double-sided laser beam welded aluminum alloy T-joints

被引:0
作者
Chen, Yanbin [1 ]
Yang, Zhibin [1 ]
Tao, Wang [1 ,2 ]
Chen, Jie [3 ]
Li, Liqun [1 ]
Liu, Shen [1 ]
Chen, Lei [3 ]
机构
[1] State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin
[2] National Key Laboratory of Metal Precision Hot Processing, Harbin Institute of Technology, Harbin
[3] National Engineering Research Center for Commercial Aircraft Manufacturing
来源
Tao, W. (taowang81@sina.com) | 1600年 / Science Press卷 / 40期
关键词
Aluminum alloy; Double-sided laser beam welding; Laser technique; Mechanical properties; Microstructure characteristics; T-joint;
D O I
10.3788/CJL201340.0503009
中图分类号
学科分类号
摘要
The microstructure characteristics and mechanical properties of double-sided laser beam welded aluminum alloy T-joints for aircraft fuselage panels are systematically analyed. The experimental results show that five distinct zones are identified between the fusion zone center and the base material which consists cellular dendrite zone, parallel dendrite zone, partially melted zone, over-aged zone, and base material. The heat affected zone of the skin side is the weakest area. The tensile strength depends on the weld penetration, and the failure originates at the weld toe on the skin side. The average transverse and axial tensile strengths reach 87.8% and 53.1% of the base materials and the fracture mechanisms of the transverse and axial tensile tests are found to be ductile and brittle fracture, respectively. The average longitudinal tensile strength reaches 90.8% of the base materials, and the average elongation is 8.4% of the original test specimens. The dimples are small and shallow, the fracture is a mixture of ductile and brittle fracture, and a tearing trace near the fusion line appears. Fatigue failure is found to originate at the weld toe on the skin side and finally crack on the skin, and the conditioned fatigue strength is 80.7 MPa. The fracture at the weld toe is a mixture of ductile and brittle fracture, and the skin panel fracture appears brittle fracture feature.
引用
收藏
相关论文
共 19 条
  • [1] Neye G., Heider P., Laser beam welding of modern Al-alloy for the aircraft industry, Proc. Conf. ECLAT'94, pp. 108-117, (1994)
  • [2] Heider P., Lasergerechte konstruktion und lasergerechte fertigungsmittel zum schweissengrossformatiger aluminium-strukturbauteile, (1994)
  • [3] Mendez P.F., Eagar T.W., Welding process for aeronautics, Advanced Materials & Processes, 159, 5, pp. 39-43, (2001)
  • [4] Dttrich D., Standfuss J., Liebscher L., Et al., Laser beam welding of hard to weld Al alloys for a regional aircraft fuselage design-first results, Phys. Procedia, 12, 1, pp. 113-22, (2011)
  • [5] Neye G., Laserstrahlschweiβkonzept für Rumpfschalen-Strukturen, (1997)
  • [6] Tempus G., New aluminum alloys and fuselage structures in aircraft design, (2001)
  • [7] Zink W., Welding fuselage shells, Industrial Laser Solutions for Manufacturing, 16, 4, pp. 7-10, (2001)
  • [8] Brenner B., Standfuss J., Morgenthal L., Et al., New technological aspects of laser beam welding of aircraft structures, (2004)
  • [9] Gedrat O., Kuck G., Kolley A., Et al., Verfahren zum schweissen von profilen auf grossformatigen aluminium-strukturbauteilen mittels laserstrahlen und vorrichtung zur durchführung des verfahrens, (1997)
  • [10] Brenner B., Laser beam welding of aircraft fuselage structures, Proc. ICALEO, pp. 838-845, (2008)