NiCo2S4 nanosphere anchored on N, S co-doped activated carbon for high-performance asymmetric supercapacitors

被引:0
|
作者
Yang, Xuan [1 ]
Wang, Xueqin [3 ]
Yu, Xuewen [1 ]
Wang, Guilong [2 ]
Huang, Biao [2 ]
Ruan, Dianbo [4 ]
Jing, Ge [5 ,6 ]
Lin, Guanfeng [2 ]
机构
[1] Ningbo Univ Technol, Sch New Energy, Ningbo 315336, Peoples R China
[2] Fujian Agr & Forestry Univ, Coll Mat Engn, Fuzhou 350108, Peoples R China
[3] Fuzhou Univ, Coll Chem Engn, Fuzhou 350108, Peoples R China
[4] Ningbo Univ, Fac Mech Engn & Mech, Ningbo 315211, Peoples R China
[5] Tianjin Univ, Sch Chem Engn & Technol, Tianjin 300072, Peoples R China
[6] Ningbo CRRC New Energy Technol Co Ltd, CRRC Supercapacitor Energy Storage & Conservat Tec, Ningbo 315112, Peoples R China
关键词
Asymmetric supercapacitor; Energy storage; N; S co-doped activated carbon; NANOTUBE ARRAYS; ELECTRODES; NANOPARTICLES; DECORATION; NANOSHEETS; NITROGEN; SPHERES; SULFUR; GROWTH;
D O I
10.1016/j.indcrop.2024.119813
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Throughout the evolution of supercapacitors, binary transition metal sulfides have been extensively researched for their potential as electrode materials. Here, NSAC-NiCo2S4 composites are prepared by in-situ growing NiCo2S4 nanosphere on N, S co-doped activated carbon (NSAC) using a simple solvothermal way. The optimized NSAC-NiCo2S4 composite inherits the NSAC's huge specific surface area, hierarchical porous structure, and high electronic conductivity, along with the excellent capacitive performance of NiCo2S4. This combination effectively reduces contact resistance and enhances the transfer rate. Calculations based on the density functional theory further indicate that synergistic interactions between NiCo2S4 and NSAC in the composite lower the OH- adsorption energy and release more active electrons. This enhancement facilitates the electrochemical reaction kinetics in supercapacitors. The as-fabricated NSAC-NiCo2S4-2 electrode possesses a remarkable specific capacitance (762 F g- 1 ) at 1 A g- 1 and exhibits a minimal charge transfer resistance (0.28 Omega). Furthermore, an asymmetric supercapacitor (positive electrode: NSAC-NiCo2S4-2; negative electrode: NSAC), achieves an impressive energy density of 36.6 Wh kg- 1 at a power density of 400.0 W kg- 1 . It also exhibits exceptional cycling stability, maintaining 86.2 % of its capacity after 10,000 cycles. These excellent results further highlight the great potential of the obtained NSAC-NiCo2S4 composites for use in energy reserve systems.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] A simple and universal method for preparing N, S co-doped biomass derived carbon with superior performance in supercapacitors
    Wang, Bin
    Ji, Linlin
    Yu, Yanling
    Wang, Nuoxin
    Wang, Jing
    Zhao, Jinbao
    ELECTROCHIMICA ACTA, 2019, 309 : 34 - 43
  • [42] Structural engineering of N/S co-doped carbon material as high-performance electrode for supercapacitors
    Liu, Mingquan
    Huo, Silu
    Xu, Min
    Wu, Linlin
    Liu, Mingjie
    Xue, Yifei
    Yan, Yi-Ming
    ELECTROCHIMICA ACTA, 2018, 274 : 389 - 399
  • [43] Synergistic MXene/NiCo2S4 composite for high-performance flexible all-solid-state supercapacitors
    Li, Wei
    Li, Yuxin
    An, Liaoyuan
    Zou, Zhuojun
    Cong, Ziyang
    Liu, Miaomiao
    Yang, Junyu
    Zhai, Shangru
    An, Qingda
    Wang, Kai
    Tong, Yao
    JOURNAL OF ENERGY STORAGE, 2024, 93
  • [44] NiCo2S4 Nanotubes Anchored 3D Nitrogen-Doped Graphene Framework as Electrode Material with Enhanced Performance for Asymmetric Supercapacitors
    Chen, Yiying
    Liu, Tao
    Zhang, Liuyang
    Yu, Jiaguo
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (13): : 11157 - 11165
  • [45] NiCo2S4 spheres grown on N,S co-doped rGO with high sulfur vacancies as superior oxygen bifunctional electrocatalysts
    Feng, Xueting
    Jiao, Qingze
    Li, Qun
    Shi, Quan
    Dai, Zheng
    Zhao, Yun
    Li, Hansheng
    Feng, Caihong
    Zhou, Wei
    Feng, Tongying
    ELECTROCHIMICA ACTA, 2020, 331
  • [46] Thiocyanogen-modulated N, S Co-doped lignin hierarchical porous carbons for high-performance aqueous supercapacitors
    Fan, Yukang
    Fu, Fangbao
    Yang, Dongjie
    Liu, Weifeng
    Qiu, Xueqing
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 667 : 147 - 156
  • [47] Preparation and Supercapacitive Performance of N, S Co-Doped Activated Carbon Materials
    Li Zhao-Hui
    Li Shi-Jiao
    Zhou Jin
    Zhu Ting-Ting
    Shen Hong-Long
    Zhuo Shu-Ping
    ACTA PHYSICO-CHIMICA SINICA, 2015, 31 (04) : 676 - 684
  • [48] Bimetallic NiCo2S4 Nanoneedles Anchored on Mesocarbon Microbeads as Advanced Electrodes for Asymmetric Supercapacitors
    Yu Zhang
    Yihe Zhang
    Yuanxing Zhang
    Haochen Si
    Li Sun
    Nano-Micro Letters, 2019, 11 (02) : 229 - 243
  • [49] Bimetallic NiCo2S4 Nanoneedles Anchored on Mesocarbon Microbeads as Advanced Electrodes for Asymmetric Supercapacitors
    Yu Zhang
    Yihe Zhang
    Yuanxing Zhang
    Haochen Si
    Li Sun
    Nano-Micro Letters, 2019, 11
  • [50] Fabrication of a High-Performance Hybrid Supercapacitor Based on NiCo2S4 Nanoneedles/Biomass Porous Carbon
    Feng, Jiansong
    Zhang, Xuetao
    Lu, Qifang
    Guo, Enyan
    Wei, Mingzhi
    ENERGY & FUELS, 2022, 36 (10) : 5424 - 5432