Classifying the clouds of Venus using unsupervised machine learning

被引:0
作者
Mittendorf, J. [1 ,2 ]
Molaverdikhani, K. [1 ,2 ,3 ]
Ercolano, B. [1 ,2 ,3 ]
Giovagnoli, A. [2 ,4 ]
Grassi, T. [3 ,5 ]
机构
[1] Ludwig Maximilians Univ Munchen, Univ Observ Munich, Fac Phys, Scheinerstr 1, D-81679 Munich, Germany
[2] Ludwig Maximilians Univ Munchen, Geschwister Scholl Pl 1, D-80539 Munich, Germany
[3] Excellence Cluster ORIGINS, Boltzmannstr 2, D-85748 Garching, Germany
[4] Microwaves & Radar Inst, German Aerosp Ctr DLR, Munchener Str 20, D-82234 Wessling, Germany
[5] Max Planck Inst Extraterr Phys, Giessenbachstr 1, D-85748 Garching, Germany
关键词
Venus; Venus clouds; Venus atmosphere; Machine learning; Convolutional neural network; MONITORING CAMERA; MORPHOLOGY; TOPS;
D O I
10.1016/j.ascom.2024.100884
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Because Venus is completely shrouded by clouds, they play an important role in the planet's atmospheric dynamics. Studying the various morphological features observed on satellite imagery of the Venusian clouds crucial to understanding not only the dynamic atmospheric processes, but also interactions between the planet's surface structures and atmosphere. While attempts at manually categorizing and classifying these features have been made many times throughout Venus' observational history, they have been limited in scope and prone to subjective bias. We therefore present and investigate an automated, objective, and scalable approach their classification using unsupervised machine learning that can leverage full datasets of past, ongoing, future missions. To achieve this, we introduce a novel framework to generate nadir observation patches of Venus' clouds fixed consistent scales from satellite imagery data of the Venus Express and Akatsuki missions. Such patches then divided into classes using an unsupervised machine learning approach that consists of encoding the patch images into feature vectors via a convolutional neural network trained on the patch datasets and subsequently clustering the obtained embeddings using hierarchical agglomerative clustering. We find that our approach demonstrates considerable accuracy when tested against a curated benchmark dataset of Earth cloud categories, is able to identify meaningful classes for global-scale (3000 km) cloud features on Venus and can detect small-scale (25 km) wave patterns. However, at medium scales (similar to 500 similar to 500 km) challenges are encountered, as available resolution and distinctive features start to diminish and blended features complicate the separation of well defined clusters.
引用
收藏
页数:13
相关论文
共 26 条
[1]  
Chen T, 2020, PR MACH LEARN RES, V119
[2]  
Dev S, 2015, IEEE IMAGE PROC, P422, DOI 10.1109/ICIP.2015.7350833
[3]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[4]  
Kurihana T., 2019, P 9 INT WORKSH CLIM, P229, DOI [10.5065/y82j-f154, DOI 10.5065/Y82J-F154]
[5]   Venus looks different from day to night across wavelengths: morphology from Akatsuki multispectral images [J].
Limaye, Sanjay S. ;
Watanabe, Shigeto ;
Yamazaki, Atsushi ;
Yamada, Manabu ;
Satoh, Takehiko ;
Sato, Takao M. ;
Nakamura, Masato ;
Taguchi, Makoto ;
Fukuhara, Tetsuya ;
Imamura, Takeshi ;
Kouyama, Toru ;
Lee, Yeon Joo ;
Horinouchi, Takeshi ;
Peralta, Javier ;
Iwagami, Naomoto ;
Hashimoto, George L. ;
Takagi, Seiko ;
Ohtsuki, Shoko ;
Murakami, Shin-ya ;
Yamamoto, Yukio ;
Ogohara, Kazunori ;
Ando, Hiroki ;
Sugiyama, Ko-ichiro ;
Ishii, Nobuaki ;
Abe, Takumi ;
Hirose, Chikako ;
Suzuki, Makoto ;
Hirata, Naru ;
Young, Eliot F. ;
Ocampo, Adriana C. .
EARTH PLANETS AND SPACE, 2018, 70
[7]   Venus monitoring camera for Venus express [J].
Markiewicz, W. J. ;
Titov, D. V. ;
Ignatiev, N. ;
Keller, H. U. ;
Crisp, D. ;
Limaye, S. S. ;
Jaumann, R. ;
Moissl, R. ;
Thomas, N. ;
Esposito, L. ;
Watanabe, S. ;
Fiethe, B. ;
Behnke, T. ;
Szemerey, I. ;
Michalik, H. ;
Perplies, H. ;
Wedemeier, M. ;
Sebastian, I. ;
Boogaerts, W. ;
Hviid, S. F. ;
Dierker, C. ;
Osterloh, B. ;
Boeker, W. ;
Koch, M. ;
Michaelis, H. ;
Belyaev, D. ;
Dannenberg, A. ;
Tschimmel, M. ;
Russo, P. ;
Roatsch, T. ;
Matz, K. D. .
PLANETARY AND SPACE SCIENCE, 2007, 55 (12) :1701-1711
[8]   The reciprocity principle in lunar photometry [J].
Minnaert, M .
ASTROPHYSICAL JOURNAL, 1941, 93 (03) :403-410
[9]   The abundance and vertical distribution of the unknown ultraviolet absorber in the venusian atmosphere from analysis of Venus Monitoring Camera images [J].
Molaverdikhani, Karan ;
McGouldrick, Kevin ;
Esposito, Larry W. .
ICARUS, 2012, 217 (02) :648-660
[10]  
Murakami S., 2018, JAXA data archives and transmission system