Optimization of Urban Target Area Accessibility for Multi-UAV Data Gathering Based on Deep Reinforcement Learning

被引:0
|
作者
Jin, Zhengmiao [1 ]
Chen, Renxiang [2 ]
Wu, Ke [1 ]
Yu, Tengwei [2 ]
Fu, Linghua [1 ]
机构
[1] Chongqing Jiaotong Univ, Sch Aeronaut, Chongqing 404100, Peoples R China
[2] Chongqing Jiaotong Univ, Sch Mechatron & Vehicle Engn, Chongqing, Peoples R China
基金
中国国家自然科学基金;
关键词
multi-UAV; data gathering; path planning; reinforcement learning (RL); exploration;
D O I
10.3390/drones8090462
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Unmanned aerial vehicles (UAVs) are increasingly deployed to enhance the operational efficiency of city services. However, finding optimal solutions for the gather-return task pattern under dynamic environments and the energy constraints of UAVs remains a challenge, particularly in dense high-rise building areas. This paper investigates the multi-UAV path planning problem, aiming to optimize solutions and enhance data gathering rates by refining exploration strategies. Initially, for the path planning problem, a reinforcement learning (RL) technique equipped with an environment reset strategy is adopted, and the data gathering problem is modeled as a maximization problem. Subsequently, to address the limitations of stationary distribution in indicating the short-term behavioral patterns of agents, a Time-Adaptive Distribution is proposed, which evaluates and optimizes the policy by combining the behavioral characteristics of agents across different time scales. This approach is particularly suitable for the early stages of learning. Furthermore, the paper describes and defines the "Narrow-Elongated Path" Problem (NEP-Problem), a special spatial configuration in RL environments that hinders agents from finding optimal solutions through random exploration. To address this, a Robust-Optimization Exploration Strategy is introduced, leveraging expert knowledge and robust optimization to ensure UAVs can deterministically reach and thoroughly explore any target areas. Finally, extensive simulation experiments validate the effectiveness of the proposed path planning algorithms and comprehensively analyze the impact of different exploration strategies on data gathering efficiency.
引用
收藏
页数:37
相关论文
共 50 条
  • [11] Multi-UAV Trajectory Design and Power Control Based on Deep Reinforcement Learning
    Zhang C.Y.
    Liang S.Y.
    He C.L.
    Wang K.Z.
    Journal of Communications and Information Networks, 2022, 7 (02): : 192 - 201
  • [12] Multi-UAV Dynamic Wireless Networking With Deep Reinforcement Learning
    Wang, Qiang
    Zhang, Wenqi
    Liu, Yuanwei
    Liu, Ying
    IEEE COMMUNICATIONS LETTERS, 2019, 23 (12) : 2243 - 2246
  • [13] Multi-UAV Target-Finding in Simulated Indoor Environments using Deep Reinforcement Learning
    Walker, Ory
    Vanegas, Fernando
    Gonzalez, Felipe
    Koenig, Sven
    2020 IEEE AEROSPACE CONFERENCE (AEROCONF 2020), 2020,
  • [14] Multi-UAV Collaborative Detection Based on Reinforcement Learning
    Hao, Yuanhui
    Guo, Chubing
    Ke, Liangjun
    ADVANCES IN SWARM INTELLIGENCE, PT I, ICSI 2024, 2024, 14788 : 463 - 474
  • [15] Multi-UAV Redeployment Optimization Based on Multi-Agent Deep Reinforcement Learning Oriented to Swarm Performance Restoration
    Wu, Qilong
    Geng, Zitao
    Ren, Yi
    Feng, Qiang
    Zhong, Jilong
    SENSORS, 2023, 23 (23)
  • [16] Energy optimization and age of information enhancement in multi-UAV networks using deep reinforcement learning
    Kim, Jeena
    Park, Seunghyun
    Park, Hyunhee
    ELECTRONICS LETTERS, 2024, 60 (20)
  • [17] Age-of-Information based Multi-UAV Trajectories Using Deep Reinforcement Learning
    Kaur, Amanjot
    Jha, Shashi Shekhar
    IETE TECHNICAL REVIEW, 2024, 41 (06) : 659 - 671
  • [18] Dynamic deployment of multi-UAV base stations with deep reinforcement learning
    Wu, Guanhan
    Jia, Weimin
    Zhao, Jianwei
    ELECTRONICS LETTERS, 2021, 57 (15) : 600 - 602
  • [19] Multi-UAV simultaneous target assignment and path planning based on deep reinforcement learning in dynamic multiple obstacles environments
    Kong, Xiaoran
    Zhou, Yatong
    Li, Zhe
    Wang, Shaohai
    FRONTIERS IN NEUROROBOTICS, 2024, 17
  • [20] Multi-UAV Adaptive Path Planning Using Deep Reinforcement Learning
    Westheider, Jonas
    Rueckin, Julius
    Popovic, Marija
    2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, IROS, 2023, : 649 - 656