Optimization of Urban Target Area Accessibility for Multi-UAV Data Gathering Based on Deep Reinforcement Learning

被引:0
|
作者
Jin, Zhengmiao [1 ]
Chen, Renxiang [2 ]
Wu, Ke [1 ]
Yu, Tengwei [2 ]
Fu, Linghua [1 ]
机构
[1] Chongqing Jiaotong Univ, Sch Aeronaut, Chongqing 404100, Peoples R China
[2] Chongqing Jiaotong Univ, Sch Mechatron & Vehicle Engn, Chongqing, Peoples R China
基金
中国国家自然科学基金;
关键词
multi-UAV; data gathering; path planning; reinforcement learning (RL); exploration;
D O I
10.3390/drones8090462
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Unmanned aerial vehicles (UAVs) are increasingly deployed to enhance the operational efficiency of city services. However, finding optimal solutions for the gather-return task pattern under dynamic environments and the energy constraints of UAVs remains a challenge, particularly in dense high-rise building areas. This paper investigates the multi-UAV path planning problem, aiming to optimize solutions and enhance data gathering rates by refining exploration strategies. Initially, for the path planning problem, a reinforcement learning (RL) technique equipped with an environment reset strategy is adopted, and the data gathering problem is modeled as a maximization problem. Subsequently, to address the limitations of stationary distribution in indicating the short-term behavioral patterns of agents, a Time-Adaptive Distribution is proposed, which evaluates and optimizes the policy by combining the behavioral characteristics of agents across different time scales. This approach is particularly suitable for the early stages of learning. Furthermore, the paper describes and defines the "Narrow-Elongated Path" Problem (NEP-Problem), a special spatial configuration in RL environments that hinders agents from finding optimal solutions through random exploration. To address this, a Robust-Optimization Exploration Strategy is introduced, leveraging expert knowledge and robust optimization to ensure UAVs can deterministically reach and thoroughly explore any target areas. Finally, extensive simulation experiments validate the effectiveness of the proposed path planning algorithms and comprehensively analyze the impact of different exploration strategies on data gathering efficiency.
引用
收藏
页数:37
相关论文
共 50 条
  • [1] Deep Reinforcement Learning Multi-UAV Trajectory Control for Target Tracking
    Moon, Jiseon
    Papaioannou, Savvas
    Laoudias, Christos
    Kolios, Panayiotis
    Kim, Sunwoo
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (20) : 15441 - 15455
  • [2] Multi-UAV Cooperative Target Assignment Method Based on Reinforcement Learning
    Ding, Yunlong
    Kuang, Minchi
    Shi, Heng
    Gao, Jiazhan
    DRONES, 2024, 8 (10)
  • [3] Collision Detection and Avoidance for Multi-UAV based on Deep Reinforcement Learning
    Wang, Guanzheng
    Liu, Zhihong
    Xiao, Kun
    Xu, Yinbo
    Yang, Lingjie
    Wang, Xiangke
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 7783 - 7789
  • [4] Optimization Design of Multi-UAV Communication Network Based on Reinforcement Learning
    Cao, Zhengyang
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [5] Deep Reinforcement Learning Based Energy Efficient Multi-UAV Data Collection for IoT Networks
    Khodaparast, Seyed Saeed
    Lu, Xiao
    Wang, Ping
    Uyen Trang Nguyen
    IEEE OPEN JOURNAL OF VEHICULAR TECHNOLOGY, 2021, 2 : 249 - 260
  • [6] Multi-UAV Path Planning for Wireless Data Harvesting With Deep Reinforcement Learning
    Bayerlein, Harald
    Theile, Mirco
    Caccamo, Marco
    Gesbert, David
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2021, 2 : 1171 - 1187
  • [7] Joint Optimization of Multi-UAV Target Assignment and Path Planning Based on Multi-Agent Reinforcement Learning
    Qie, Han
    Shi, Dianxi
    Shen, Tianlong
    Xu, Xinhai
    Li, Yuan
    Wang, Liujing
    IEEE ACCESS, 2019, 7 : 146264 - 146272
  • [8] Deep Reinforcement Learning Based Computation Offloading and Trajectory Planning for Multi-UAV Cooperative Target Search
    Luo, Quyuan
    Luan, Tom H.
    Shi, Weisong
    Fan, Pingzhi
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2023, 41 (02) : 504 - 520
  • [9] A deep reinforcement learning based distributed multi-UAV dynamic area coverage algorithm for complex environment
    Xiao, Jian
    Yuan, Guohui
    Xue, Yuxi
    He, Jinhui
    Wang, Yaoting
    Zou, Yuanjiang
    Wang, Zhuoran
    NEUROCOMPUTING, 2024, 595
  • [10] Transformer-Based Reinforcement Learning for Scalable Multi-UAV Area Coverage
    Chen, Dezhi
    Qi, Qi
    Fu, Qianlong
    Wang, Jingyu
    Liao, Jianxin
    Han, Zhu
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (08) : 10062 - 10077