Software reliability prediction using cuckoo search optimization, empirical mode decomposition, and ARIMA model: CS-EEMD-ARIMA Based SRGM

被引:2
|
作者
Choudhary A. [1 ]
Baghel A.S. [1 ]
机构
[1] Gautam Buddha University, Department of Computer Science and Engineering, Noida
来源
| 1600年 / IGI Global卷 / 07期
关键词
ARIMA; Cuckoo Search Optimization; EEMD; Software Reliability Growth Model; Time Series Model;
D O I
10.4018/IJOSSP.2016100103
中图分类号
学科分类号
摘要
The demand of highly reliable and superior quality open source software's are increasing day by day. This demand force software developers to improvise the reliability of their software's. Authors have proposed several parametric and non-parametric software reliability models but they have their own limitations, like parametric model suffer from unrealistic model assumptions, operating environment condition dependencies. In contrast to parametric, non-parametric models overcome these issues but they are computationally costlier. So, the scope of optimization or development of new reliable model still exists. This paper presents an effective software reliability modeling based on Cuckoo Search optimization, Ensemble Empirical Mode Decomposition and ARIMA modeling of time series to provide more accurate prediction. Extensive experiments on 5 real datasets is conducted and results are collected. The analysis of results indicates the superiority of proposed technique over existing parametric and non-parametric models for open source software's and propriety software's. © 2016, IGI Global.
引用
收藏
页码:39 / 54
页数:15
相关论文
empty
未找到相关数据