Effect of cerium-doped on electrical properties of bismuth-layer 0.85Bi4Ti3O12-0.15LiNbO3 piezoelectric ceramics

被引:0
作者
Yang, Fan [1 ]
Jiang, Xiangping [1 ]
Tu, Na [1 ]
Shao, Hong [1 ]
Xu, Xinmin [1 ]
Xiong, Shan [1 ]
机构
[1] Department of Material Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen, 333001, Jiangxi
来源
Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society | 2015年 / 43卷 / 09期
关键词
Bismuth layer-structured; Complex impedance spectrum; Conductivity; Piezoelectric ceramics;
D O I
10.14062/j.issn.0454-5648.2015.09.06
中图分类号
学科分类号
摘要
The cerium modified 0.85Bi4Ti3O12-0.15LiNbO3-0.75%CeO2 (BTO-LN-0.75Ce) piezoelectric ceramics were synthesized by a conventional solid state processing. The effects of temperature and frequency on the electrical properties of ceramics were investigated. The results show that the real (ε') and the imaginary (ε″) parts of permittivity both appear dispersive at low frequencies. The values of the real (Z') part of impedance (Z*) decrease, and the values of the imaginary (Z″) part firstly increase and then decrease with increasing frequency. According to the Cole-Cole plots, the grain interior is a major contribution to the electrical conduction process as a parallel resistance-capacitance equivalent circuit. The semicircles become smaller when temperature increases, indicating that the impedance decreases with the increase of temperature. The stabilized conductivity appears in the low frequency region at high temperatures. The conductivity obeys the Arrhenius law, showing the thermal activation of the process. The grain activation energy, Ea1(g), of BTO-LN-0.75Ce (i.e., 1.591 9 eV) is lower than Ea2(g) of BTO-LN (i.e., 1.756 2 eV). ©, 2015, Chinese Ceramic Society. All right reserved.
引用
收藏
页码:1209 / 1213
页数:4
相关论文
共 20 条
[1]  
Paz De Araujo C.A., Cuchlaro J.D., Mcmillan L.D., Et al., Fatigue-free ferroelectric capacitors with platinum electrodes, Nature, 374, pp. 627-629, (1995)
[2]  
Jiang X.P., Yang Q., Chen C., Et al., Nb-modified Bi<sub>4</sub>Ti<sub>3</sub>O<sub>12</sub> piezoelectric for high temperature applications, Inorg Mater, 25, 11, pp. 1169-1174, (2010)
[3]  
Tao J., Yi Z.G., Liu Y., Et al., Dielectric tunability, dielectric relaxation, and impedance spectroscopic studies on (Ba<sub>0.85</sub>Ca<sub>0.15</sub>)(Ti<sub>0.9</sub>Zr<sub>0.1</sub>)O<sub>3</sub> lead-free ceramics, J Am Ceram Soc, 96, 6, pp. 1847-1851, (2013)
[4]  
Liu L.J., Huang Y.M., Li Y.H., Et al., Oxygen-vacancy-related high-temperature dielectric relaxation and electrical conduction in 0.95K<sub>0.5</sub>Na<sub>0.5</sub>NbO<sub>3</sub>-0.05BaZrO<sub>3</sub> ceramic, Phys B, 407, pp. 136-139, (2012)
[5]  
Dash U., Sahoo S., Chaudhuri P., Et al., Electrical properties of bulk and nano Li<sub>2</sub>TiO<sub>3</sub> ceramics: A comparative study, J Adv Ceram, 3, 2, pp. 89-97, (2014)
[6]  
Wei X.Y., Wan X., Yao X., Dielectric relaxation in paraelectric phase of Ba(Ti,Sn)O<sub>3</sub> ceramics, J Electroceram, 21, pp. 226-229, (2008)
[7]  
Li C.C., Wei X.Y., Complex impedance analysis on a layered perovskite-like ceramic: La<sub>3</sub>Ti<sub>2</sub>TaO<sub>11</sub>, J Mater Sci, 47, pp. 4200-4204, (2012)
[8]  
Jiang X.P., Yang F., Chen C., Et al., Microstructure and electrical properties of cerium-modified bismuth-layer 0.85Bi<sub>4</sub>Ti<sub>3</sub>O<sub>12</sub>-0.15LiNbO<sub>3</sub> piezoelectric ceramics, J Chin Ceram Soc, 42, 12, pp. 1501-1506, (2014)
[9]  
Jonscher A.K., Low frequency dispersion in carrier-dominated dielectrics, Philos Mag B, 38, pp. 587-601, (1978)
[10]  
Jonscher A.K., Dube D.C., Low frequency dispersion in tri-glycyne sulphate, Ferroelectrics, 17, pp. 533-536, (1977)