Quintication" method to obtain approximate analytical solutions of non-linear oscillators"

被引:28
作者
Escuela Nacional de Posgrado en Ciencias, Ingenieria y Tecnologias, Tecnologico de Monterrey, Campus Monterrey, E. Garza Sada 2501, Sur, C.P. 64849 Monterrey, N.L., Mexico [1 ]
机构
[1] Escuela Nacional de Posgrado en Ciencias, Ingenieria y Tecnologias, Tecnologico de Monterrey, Campus Monterrey, Sur, C.P. 64849 Monterrey, N.L.
来源
Appl. Math. Comput. | / 849-855期
关键词
Chebyshev polynomials; Cubic-quintic Duffing-harmonic oscillator; Frequency-amplitude relation; Jacobi elliptic functions; Nonlinear oscillators;
D O I
10.1016/j.amc.2014.05.085
中图分类号
学科分类号
摘要
In this paper we propose a new approach to replace nonlinear ordinary differential equations by approximate cubic-quintic Duffing oscillators in which its coefficients depend on the initial amplitude of oscillation. It is shown that this procedure leads to angular frequency values with relative errors that are lower than those found by previously developed approximate solutions. © 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:849 / 855
页数:6
相关论文
共 16 条
  • [1] Iwan W.D., On defining equivalent systems for certain ordinary non-linear differential equations, Int. J. Nonlinear Mech., 4, pp. 325-334, (1969)
  • [2] Sinha S.C., Srinivasan P., A weighted mean square method of linearization in non-linear oscillations, J. Sound Vib., 16, 2, pp. 139-148, (1971)
  • [3] Yuste S.Bravo, Sanchez A.Martin, Weighted mean-square method of 'cubication' for non-linear oscillators, Journal of Sound and Vibration, 134, 3, pp. 423-433, (1989)
  • [4] Yuste S.B., Cubication of non-linear oscillators using the principle of harmonic balance, Int. J. Nonlinear Mech., 27, pp. 347-356, (1992)
  • [5] Belendez A., Alvarez M.L., Fernandez E., Pascual I., Cubication of conservative nonlinear oscillators, Eur. J. Phys., 30, pp. 973-981, (2009)
  • [6] Belendez A., Mendez D.I., Fernandez E., Marini S., Pascual I., An explicit approximate solution to the Duffing-harmonic oscillator by a cubication method, Phys. Lett. A, 373, pp. 2805-2809, (2009)
  • [7] Belendez A., Alvarez M.L., Fernandez E., Pascual I., Cubication of conservative nonlinear oscillators, J. Phys., 30, pp. 973-981, (2009)
  • [8] Belendez A., Bernabeu G., Frances J., Mendez D.I., Marini S., An accurate closed-form approximate solution for the quintic Duffing oscillator equation, Math. Comput. Model., 52, pp. 637-641, (2010)
  • [9] Elias-Zuniga A., Marti Nez-Romero O., Accurate solutions of conservative nonlinear oscillators by the enhanced cubication method, Math. Prob. Eng., 2013, (2013)
  • [10] Elias-Zuniga A., Exact solution of the cubic-quintic Duffing oscillator, Appl. Math. Model., 37, pp. 2574-2579, (2013)