High-fidelity reconstruction of porous cathode microstructures from FIB-SEM data with deep learning

被引:1
作者
Sun, Yujian [1 ,2 ]
Pan, Hongyi [1 ,2 ]
Wang, Bitong [1 ]
Li, Yu [1 ,2 ]
Wang, Xuelong [1 ]
Li, Jizhou [3 ,4 ]
Yu, Xiqian [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Phys, Beijing Frontier Res Ctr Clean Energy, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Chinese Univ Hong Kong, Dept Elect Engn, Hong Kong 999077, Peoples R China
[4] CUHK Shenzhen Res Inst, Shenzhen 518057, Peoples R China
基金
中国国家自然科学基金;
关键词
2-PHASE FLOW; NETWORK;
D O I
10.1063/5.0228024
中图分类号
O59 [应用物理学];
学科分类号
摘要
Accurate modeling of lithium-ion battery (LIB) electrode microstructures provides essential references for understanding degradation mechanisms and optimizing materials. Traditional segmentation methods often struggle to accurately capture the complex microstructures of porous LIB electrodes in focused ion beam scanning electron microscopy (FIB-SEM) data. In this work, we develop a deep learning model based on the Swin Transformer to segment FIB-SEM data of a lithium cobalt oxide electrode, utilizing fused secondary and backscattered electron images. The proposed approach outperforms other deep learning methods, enabling the acquirement of 3D microstructure with reduced particle elongated artifacts. Analyses of the segmented microstructures reveal improved electrode tortuosity and pore connectivity crucial for ion and electron transport, emphasizing the necessity of accurate 3D modeling for reliable battery performance predictions. These results suggest a path toward voxel-level degradation analysis through more sensible battery simulation on high-fidelity microstructure models directly twinned from real porous electrodes.
引用
收藏
页数:8
相关论文
共 44 条
[21]  
Draelos RL, 2021, Arxiv, DOI [arXiv:2011.08891, 10.48550/arXiv.2011.08891]
[22]   Deep learning image segmentation for the reliable porosity measurement of high-capacity Ni-based oxide cathode secondary particles [J].
Lee, Hee-Beom ;
Jung, Min-Hyoung ;
Kim, Young-Hoon ;
Park, Eun-Byeol ;
Jang, Woo-Sung ;
Kim, Seon-Je ;
Choi, Ki-ju ;
Park, Ji-young ;
Hwang, Kee-bum ;
Shim, Jae-Hyun ;
Yoon, Songhun ;
Kim, Young-Min .
JOURNAL OF ANALYTICAL SCIENCE AND TECHNOLOGY, 2023, 14 (01)
[23]   Dynamics of particle network in composite battery cathodes [J].
Li, Jizhou ;
Sharma, Nikhil ;
Jiang, Zhisen ;
Yang, Yang ;
Monaco, Federico ;
Xu, Zhengrui ;
Hou, Dong ;
Ratner, Daniel ;
Pianetta, Piero ;
Cloetens, Peter ;
Lin, Feng ;
Zhao, Kejie ;
Liu, Yijin .
SCIENCE, 2022, 376 (6592) :517-+
[24]   Mitigation of charge heterogeneity by uniform in situ coating enables stable cycling of LiCoO2 at 4.6V [J].
Li, Yu ;
Pan, Hongyi ;
Gan, Luyu ;
Zan, Mingwei ;
Huang, Yuli ;
Wang, Bitong ;
Deng, Biao ;
Wang, Tian ;
Yu, Xiqian ;
Wang, Bo ;
Li, Hong ;
Huang, Xuejie .
ENERGY STORAGE MATERIALS, 2024, 67
[25]   Swin Transformer: Hierarchical Vision Transformer using Shifted Windows [J].
Liu, Ze ;
Lin, Yutong ;
Cao, Yue ;
Hu, Han ;
Wei, Yixuan ;
Zhang, Zheng ;
Lin, Stephen ;
Guo, Baining .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :9992-10002
[26]   Microstructural Evolution of Battery Electrodes During Calendering [J].
Lu, Xuekun ;
Daemi, Sohrab R. ;
Bertei, Antonio ;
Kok, Matthew D. R. ;
O'Regan, Kieran B. ;
Rasha, Lara ;
Park, Juyeon ;
Hinds, Gareth ;
Kendrick, Emma ;
Brett, Dan J. L. ;
Shearing, Paul R. .
JOULE, 2020, 4 (12) :2746-2768
[27]   A particle-resolved 3D finite element model to study the effect of cathode microstructure on the behavior of lithium ion batteries [J].
Mai, Weijie ;
Yang, Ming ;
Soghrati, Soheil .
ELECTROCHIMICA ACTA, 2019, 294 :192-209
[28]   Influence of the Carbon Black Dispersing Process on the Microstructure and Performance of Li-Ion Battery Cathodes [J].
Mayer, Julian Kristoffer ;
Almar, Laura ;
Asylbekov, Ermek ;
Haselrieder, Wolfgang ;
Kwade, Arno ;
Weber, Andre ;
Nirschl, Hermann .
ENERGY TECHNOLOGY, 2020, 8 (02)
[29]   Deep learning-based segmentation of lithium-ion battery microstructures enhanced by artificially generated electrodes [J].
Mueller, Simon ;
Sauter, Christina ;
Shunmugasundaram, Ramesh ;
Wenzler, Nils ;
De Andrade, Vincent ;
De Carlo, Francesco ;
Konukoglu, Ender ;
Wood, Vanessa .
NATURE COMMUNICATIONS, 2021, 12 (01)
[30]   Classification of FIB/SEM-tomography images for highly porous multiphase materials using random forest classifiers [J].
Osenberg, Markus ;
Hilger, Andre ;
Neumann, Matthias ;
Wagner, Amalia ;
Bohn, Nicole ;
Binder, Joachim R. ;
Schmidt, Volker ;
Banhart, John ;
Manke, Ingo .
JOURNAL OF POWER SOURCES, 2023, 570