Multi-valued control of port-Hamiltonian systems

被引:0
|
作者
Castaños F. [1 ]
机构
[1] Departamento de Control Automático, Cinvestav-IPN, Ciudad de México
来源
RIAI - Revista Iberoamericana de Automatica e Informatica Industrial | 2022年 / 19卷 / 04期
关键词
controller constraints; differential inclusions; Lagrangian and Hamiltonian systems; Passivity-based control; robust controller synthesis; structure;
D O I
10.4995/riai.2022.16814
中图分类号
学科分类号
摘要
We consider the use of multi-valued control laws for port-Hamiltonian systems. It is shown that if the multi-valued controller is monotonically increasing, then the control action is passive, the closed-loop system is well-defined, and robust output regulation is achieved. We propose a concrete methodology to construct maximal monotonically increasing controls. The scheme can be naturally applied to systems originally described by multi-valued operators, such as mechanical systems with unilateral constraints and circuits with diodes and transistors. © 2022 Universitat Politecnica de Valencia. All rights reserved.
引用
收藏
页码:419 / 429
页数:10
相关论文
共 50 条
  • [1] Multi-valued control of port-Hamiltonian systems
    Castanos, Fernando
    REVISTA IBEROAMERICANA DE AUTOMATICA E INFORMATICA INDUSTRIAL, 2022, 19 (04): : 419 - 429
  • [2] Optimal control of thermodynamic port-Hamiltonian Systems
    Maschke, Bernhard
    Philipp, Friedrich
    Schaller, Manuel
    Worthmann, Karl
    Faulwasser, Timm
    IFAC PAPERSONLINE, 2022, 55 (30): : 55 - 60
  • [3] On port-Hamiltonian modeling and control of quaternion systems
    Fujimoto, Kenji
    Takeuchi, Tomoya
    Matsumoto, Yuki
    IFAC PAPERSONLINE, 2015, 48 (13): : 39 - 44
  • [4] Modelling and control of multi-energy systems: An irreversible port-Hamiltonian approach
    Ramirez, Hector
    Maschke, Bernhard
    Sbarbaro, Daniel
    EUROPEAN JOURNAL OF CONTROL, 2013, 19 (06) : 513 - 520
  • [5] Stochastic Port-Hamiltonian Systems
    Francesco Cordoni
    Luca Di Persio
    Riccardo Muradore
    Journal of Nonlinear Science, 2022, 32
  • [6] Incrementally port-Hamiltonian systems
    Camlibel, M. K.
    van der Schaft, A. J.
    2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, : 2538 - 2543
  • [7] Distributed Control for Infinite Dimensional Port-Hamiltonian Systems
    Macchelli, Alessandro
    IFAC PAPERSONLINE, 2021, 54 (19): : 52 - 57
  • [8] On Stochastic port-Hamiltonian Systems with Boundary Control and Observation
    Lamoline, F.
    Winkin, J. J.
    2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2017,
  • [9] PORT-HAMILTONIAN SYSTEMS ON GRAPHS
    van der Schaft, A. J.
    Maschke, B. M.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2013, 51 (02) : 906 - 937
  • [10] Memristive port-Hamiltonian Systems
    Jeltsema, Dimitri
    van der Schaft, Arjan J.
    MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2010, 16 (02) : 75 - 93