Multiscale thermal modeling of cured cycloaliphatic epoxy/carbon fiber composites

被引:31
作者
Chinkanjanarot, Sorayot [1 ]
Radue, Matthew S. [1 ]
Gowtham, S. [1 ]
Tomasi, Julie M. [1 ]
Klimek-McDonald, Danielle R. [1 ]
King, Julia A. [1 ]
Odegard, Gregory M. [1 ]
机构
[1] Michigan Technol Univ, 1400 Townsend Dr, Houghton, MI 49931 USA
关键词
glass transition; resins; theory and modeling; thermal properties; thermosets; MOLECULAR-DYNAMICS SIMULATION; LINKED EPOXY-RESIN; THERMOSET POLYMER; MECHANICAL RESPONSE; BORON-NITRIDE; CONDUCTIVITY; PREDICTION; PARTICLES; NETWORKS; SPECTROSCOPY;
D O I
10.1002/app.46371
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Cycloaliphatic epoxies (CEs) are commonly used for structural applications requiring improved resistance to elevated temperatures, UV radiation, and moisture relative to other epoxy materials. Accurate and efficient computational models can greatly facilitate the development of CE-based composite materials for applications such as Aluminum Conductor Composite Core high-voltage power lines. In this study, a new multiscale modeling method is developed for CE resins and composite materials to efficiently predict thermal properties (glass-transition temperature, thermal expansion coefficient, and thermal conductivity). The predictions are compared to experimental data, and the results indicate that the multiscale modeling method can accurately predict thermal properties for CE-based materials. For 85% crosslink densities, the predicted glass-transition temperature, thermal expansion coefficient, and thermal conductivity are 279 degrees C, 109 ppm degrees C-1, 0.24 W m(-1) K-1, respectively. Thus, this multiscale modeling method can be used for the future development of improved CE composite materials for thermal applications. (c) 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 135, 46371.
引用
收藏
页数:10
相关论文
empty
未找到相关数据